Skip to main content
Log in

Synchronization Regimes in an Ensemble of Phase Oscillators Coupled Through a Diffusion Field

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We consider an ensemble of identical phase oscillators coupled through a common diffusion field. Using the Ott–Antonsen reduction, we develop dynamical equations for the complex local order parameter and the mean field. The regions of the existence and stability are determined for the totally synchronous, partially synchronous, and asynchronous spatially homogeneous states. A procedure of searching for inhomogeneous states as periodic trajectories of an auxiliary system of the ordinary differential equations is demonstrated. A scenario of emergence of chimera structures from homogeneous synchronous solutions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, Cambridge (2001).

    Book  Google Scholar 

  2. G. V. Osipov, J. Kurths, and Ch. Zhou, Synchronization in Oscillatory Networks, Springer-Verlag, Berlin (2007).

    Book  Google Scholar 

  3. V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, and V. D. Shalfeev, Stability, Structures and Chaos in Nonlinear Synchronization Networks, World Scientific, Singapore (1994).

    MATH  Google Scholar 

  4. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, New York (1984).

    Book  Google Scholar 

  5. A. Pikovsky and M. Rosenblum, Chaos, 25, No. 9, 097616 (2015). https://doi.org/10.1063/1.4922971

  6. F. A. Rodrigues, T. K. Peron, P. Ji, and J. Kurths, Phys. Rep., 610, 1–98 (2016). https://doi.org/10.1016/j.physrep.2015.10.008

    Article  ADS  MathSciNet  Google Scholar 

  7. M. J. Panaggio and D. M. Abrams, Nonlinearity, 28, R67–R87 (2015). https://doi.org/10.1088/0951-7715/28/3/R67

    Article  ADS  Google Scholar 

  8. N. Yao and Z. Zhigang, Int. J. Mod. Phys. B, 30, No. 7, 1630002 (2016). https://doi.org/10.1142/S0217979216300024

    Article  ADS  Google Scholar 

  9. T. Gregor, K. Fujimoto, N. Masaki, and S. Sawai, Science, 328, No. 5981, 1021–1025 (2010). https://doi.org/10.1126/science.1183415

    Article  ADS  Google Scholar 

  10. A. Prindle and J. Hasty, Science, 328, No. 5981, 987–988 (2010). https://doi.org/10.1126/science.1190372

    Article  Google Scholar 

  11. J. Javaloyes, M. Perrin, and A. Politi, Phys. Rev. E, 78, No. 1, 011108 (2008). https://doi.org/10.1103/PhysRevE.78.011108

  12. S. Chhabria, K. A. Blaha, F. Della Rossa, and F. Sorrentino, Chaos, 28, No. 11, 111102 (2018). https://doi.org/10.1063/1.5052652

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Rosenblum and A. Pikovsky, Phys. Rev. Lett., 98, 064101 (2007). https://doi.org/10.1103/PhysRevLett.98.064101

  14. D. J. Schwab, A. Baetica, and P. Mehta, Phica D, 241, No. 21, 1782–1788 (2012). https://doi.org/10.1016/j.physd.2012.08.005

    Article  ADS  Google Scholar 

  15. D. J. Schwab, G. G. Plunk, and P. Mehta, Chaos, 22, No. 4, 043139 (2012). https://doi.org/10.1063/1.4767658

  16. Ch. Choe, M. Choe, H. Jang, and R.Kim, Phys. Rev. E, 101, No. 4, 042213 (2020). https://doi.org/10.1103/PhysRevE.101.042213

  17. O. E. Omel’chenko, Nonlinearity, 31, R121–R164 (2018). https://doi.org/10.1088/1361-6544/aaaa07

  18. A. E. Motter, Nature Phys., 6, No. 3, 1745–2481 (2010). https://doi.org/10.1038/nphys1609

    Article  Google Scholar 

  19. L. A. Smirnov, G. V. Osipov, and A. Pikovsky, J. Phys. A: Math. Theor., 50, No. 8, 08LT01 (2017). https://doi.org/10.1088/1751-8121/aa55f1

    Article  Google Scholar 

  20. M. I. Bolotov, L. A. Smirnov, G. V. Osipov, and A. S. Pikovsky, JETP Lett., 106, No. 6, 393–399 (2017). https://doi.org/10.1134/S0021364017180059

    Article  ADS  Google Scholar 

  21. M. I. Bolotov, L. A. Smirnov, G. V. Osipov, and A. Pikovsky, Chaos, 28, No. 4, 045101 (2018). https://doi.org/10.1063/1.5011678

  22. D. I. Bolotov, M. I. Bolotov, L. A. Smirnov, et al., Regul. Chaotic Dyn., 24, No. 6, 717–724 (2019). https://doi.org/10.1134/S1560354719060091

    Article  ADS  MathSciNet  Google Scholar 

  23. M. I. Bolotov, L. A. Smirnov, G. V. Osipov, and A. Pikovsky, Phys. Rev. E, 102, No. 4, 042218 (2020). https://doi.org/10.1103/PhysRevE.102.042218

  24. M. I. Bolotov, L. A. Smirnov, E. S. Bubnova, et al., J. Exp. Theor. Phys., 132, No. 1, 127–147 (2021). https://doi.org/10.1134/S1063776121010106

    Article  ADS  Google Scholar 

  25. C. R. Laing, Physica D, 238, No. 16, 1569–1588 (2009). https://doi.org/10.1016/j.physd.2009.04.012

    Article  ADS  MathSciNet  Google Scholar 

  26. C. R. Laing, Chaos, 19, 013113 (2009). https://doi.org/10.1063/1.3068353

  27. S. Shima and Y. Kuramoto, Phys. Rev. E, 69, No. 3, 036213 (2004). https://doi.org/10.1103/PhysRevE.69.036213

  28. C. R. Laing, Phys. Rev. E, 92, No. 5, 050904 (2015). https://doi.org/10.1103/PhysRevE.92.050904

  29. A. Prindle, P. Samayoa, I. Razinkov, et al., Nature, 481, 39–44 (2012). https://doi.org/10.1038/nature10722

  30. A. Goldbeter and M. Berridge, Biochemical Oscillations and Cellular Rhythms, Cambridge Univ. Press, Cambridge (1996).

    Book  Google Scholar 

  31. J. J. Tyson, K. A. Alexander, V. S. Manoranjan, and J. D. Murray, Physica D, 34, 193–207 (1989). https://doi.org/10.1016/0167-2789(89)90234-0

    Article  ADS  MathSciNet  Google Scholar 

  32. V. K.Vanag and I. R. Epstein, Phys. Rev. Lett., 90, 098301 (2003). https://doi.org/10.1103/PhysRevLett.90.098301

  33. E. Ott and T. M. Antonsen, Chaos, 18, 037113 (2008). https://doi.org/10.1063/1.2930766

  34. E. Ott and T. M. Antonsen, Chaos, 19, 023117 (2009). https://doi.org/10.1063/1.3136851

  35. B. Pietras and A. Daffertshofer, Chaos, 26, No. 26, 103101 (2016). https://doi.org/10.1063/1.4963371

  36. S. Watanabe and S. H. Strogatz, Phys. Rev. Lett., 70, No. 16, 2391–2394 (1993). https://doi.org/10.1103/PhysRevLett.70.2391

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Pikovsky and M. Rosenblum, Phys. Rev. Lett., 101, No. 26, 264103 (2008). https://doi.org/10.1103/PhysRevLett.101.264103

  38. M. Wolfrum, O. E. Omel’chenko, S. Yanchuk, and Y. L. Maistrenko, Chaos, 21, 013112 (2011). https://doi.org/10.1063/1.3563579

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Bolotov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 10, pp. 787–805, October 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_10_787

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotov, D.I., Bolotov, M.I., Smirnov, L.A. et al. Synchronization Regimes in an Ensemble of Phase Oscillators Coupled Through a Diffusion Field. Radiophys Quantum El 64, 709–725 (2022). https://doi.org/10.1007/s11141-022-10173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10173-4

Navigation