Skip to main content
Log in

Volume Heating of a Vertical Air Column by Microwave Radiation in the Atmospheric Absorption Line

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a method of volume heating of a vertical air column by the vertically directed microwave radiation at the frequency of the spectral atmospheric-absorption line. The heating efficiency is estimated for the case of the molecular-oxygen absorption band near a frequency of 60 GHz. The proposed heating method can lead to the formation of new convection structures in an air column. Absence of natural ascending airflows with stationary heating over the entire flow length is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dessens and J. Vaillant, Comptes rendus de l’Academie des Sci., 256, 1818 (1963).

    Google Scholar 

  2. J. Dessens, Nature, 193, 4810 (1962).

    Article  Google Scholar 

  3. C. R. Church, J. T. Snow, and J. Dessens, Bull. Am. Meteorol. Soc., 61, No. 7, 682 (1980).

    Article  ADS  Google Scholar 

  4. J. T. Snow, Rev. Geophys., 25, 371 (1987).

    Article  ADS  Google Scholar 

  5. B. Benech, J. Appl. Meteorol. Climatol., 15, No. 1, 127 (1976).

    Article  ADS  Google Scholar 

  6. A. A. Kuznetsov and N. G. Konopasov, Meteotron. Book 1. Research Complex [in Russian], Izd. Vladimir State Univ., Vladimir (2015).

    Google Scholar 

  7. A. A. Kuznetsov and N. G. Konopasov, Meteotron. Book 2. Experiments. Observations. Registrations [in Russian], Izd. Vladimir State Univ.., Vladimir (2015), p. 232.

    Google Scholar 

  8. C. H. Townes and A. L. Shawlow, Microwave Spectroscopy, McGrow Hill, New York (1955).

    Google Scholar 

  9. M. Yu. Tret’yakov, High-Precision Resonator Spectroscopy of Atmospheric Gases in Millimeter- and Submillimeter-Wave Ranges [in Russian], Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (2016).

    Google Scholar 

  10. L. Prandtl, F’uhrer durch die Str’omungslehre [in German], Hafner, New York (1952).

    Google Scholar 

  11. H. J. Liebe and D. H. Layton, NTIA Report 87-224, Millimeter-Wave Properties of Atmosphere: Laboratory Studies and Propagation Modeling, Institute for Telecommunication Studies, Boulder, CO, US Department of Commerce, (1987).

  12. J. F. Shively, R. E. Bier, M. Caplan, et al., Final Report 60 GHz Gyrotron Development Program 1979–1984. ORNL/Sub/79-21453/21. Varian Associates, Inc., Palo Alto, CA (USA) (1986).

  13. https://www.osti.gov/biblio/5626572.

  14. T. Karya, T. Imai, R. Minami, et al., Nuclear Fusion, 57, No. 6, 066001 (2017).

    Article  ADS  Google Scholar 

  15. G. S. Nusinovich, M. K.A. Thumm, and M. I. Petelin, J. Infrar. Millim. Terahertz Waves, 35, No. 4, 325 (2014).

    Article  Google Scholar 

  16. A. Kasugai, K. Sakamoto, K. Takahashi, et al., Nucl. Fusion, 48, No. 5, 054009 (2008).

    Article  ADS  Google Scholar 

  17. S. N. Bogdanov, S. I. Burtsev, O. P. Ivanov, and A. V. Kupriyanova, Refrigerating Engineering. Air Conditioning. Properties of Materials [in Russian], S. N. Bogdanov ed., Handbook, the 4th Revised and Enlarged edition, St.-Petersburg State Academy of Cold and Food Technologies (1999).

  18. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New York (1987).

    Google Scholar 

  19. B. Cushman-Roisin, Environmental Fluid Mechanics, John Wiley & Sons, NY (2019).

    Google Scholar 

  20. http://www.dartmouth.edu/cushman/courses/engs151/lectures.html.

  21. I. I. Antakov, S. P. Belov, L. I. Gershtein, et al., JETP Lett., 19, No. 10, 329 (1974).

    ADS  Google Scholar 

  22. S. M. Shmeter, in: A. M. Prokhorov, ed., Great Soviet Encyclopedia [in Russian], Vol. 10, Sovetskaya Entsiklopedia, Moscow (1972), p. 176.

    Google Scholar 

  23. S. P. Belov, A. V. Burenin, et al., Opt. Spectrosc., 35, No. 2, 172 (1973).

    Google Scholar 

  24. A. P. Fokin, M. Yu. Glyavin, G. Yu. Golubyatnikov, et al., Nat. Sci. Rep., 8, 4317 (2018).

    Article  ADS  Google Scholar 

  25. https://www.iter.org/newsline/-/2112.

  26. L. F. Chernogor, Izv. Atmos. Oceanic Phys, 54, No. 6, 528 (2018).

    Article  ADS  Google Scholar 

  27. O. Onishchenko, O. Pokhotelov, W. Horton, and V. Fedun, Ann. Geophys., 33, No. 11, 1343 (2015).

    Article  ADS  Google Scholar 

  28. O. G. Onishchenko, W. Horton, O. A. Pokhotelov, and V. Fedun, J. Geoph. Res.: Atmos., 121, No. 19, 11264 (2016).

    ADS  Google Scholar 

  29. W. Horton, H. Miura, O. Onishchenko, et al., J. Geoph. Res.: Atmos., 121, No. 12, 7197 (2016).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Tretyakov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 62, No. 4, pp. 277–285, April 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupnov, A.F., Tretyakov, M.Y. Volume Heating of a Vertical Air Column by Microwave Radiation in the Atmospheric Absorption Line. Radiophys Quantum El 62, 250–256 (2019). https://doi.org/10.1007/s11141-019-09973-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-019-09973-y

Navigation