Skip to main content
Log in

Errors in Radar Measurements of the Sea-Surface Large-Scale Slopes Due to the Sea-Wave Nonlinearity

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We analyze the errors of retrieving the variance of the large-scale slopes of the sea surface from the microwave sounding data. The errors caused by the slope-distribution deviations from the Gaussian distribution are considered. The model of the Cox–Munk probability-density function is used for analysis. The average relative error of calculating the variance from the nadir-sounding data amounts to 12%. When calculating the slope variances using the sounding data in the case of several incidence angles, the error depends on choosing the incidence-angle range. In this case, the relative error of determining the sea-surface slope variance amounts to 10–20%. Deviations of the sea-surface slope distributions from the Gaussian distribution lead to underestimated calculated values of the slope variance for both nadir and oblique sounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Korotaev and V. N. Eremeev, Introduction to Operative Oceanography of the Black Sea [in Russian], EKOSI-Gidrofizika, Sevastopol’ (2006).

    Google Scholar 

  2. F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, Pergamon Press, Oxford (1979).

    Google Scholar 

  3. M. V. Danilychev, B. G. Kutuza, and A. G. Nikolaev, Sovr. Probl. Dist. Zond. Zemli Kosm., 2, 68 (2006)

    Google Scholar 

  4. C. Cox and W. Munk, J. Opt. Soc. Am., 44, No. 11, 838 (1954).

    Article  ADS  Google Scholar 

  5. F. M. Breon and N. Henriot, J. Geophys. Res., 111, No. 6, C06005 (2006).

    ADS  Google Scholar 

  6. S. T. Wu and A. K. Fung, J. Geophys. Res., 77, No. 30, 5917 (1972).

    Article  ADS  Google Scholar 

  7. V. Yu. Karaev, M. A. Panfilova, G. N. Balandina, and K. Chu., Issled. Zemli Kosm., No. 4, 62 (2012).

  8. D. Hauser, G. Caudal, S. Guimbard, and A. A. Mouche, J. Geophys. Res., 113, No. 2, C02006 (2008).

    ADS  Google Scholar 

  9. A. S. Zapevalov, Izvestiya—Atmos. Ocean. Phys., 45, No. 2, 253 (2009).

    Article  ADS  Google Scholar 

  10. V. Yu. Karaev, M. B. Kanevsky, E. M. Meshkov, et al., Radiophys. Quantum Electron., 51, No. 5, 360 (2008).

    Article  ADS  Google Scholar 

  11. M. A. Panfilova and V. Yu. Karaev, Sovr. Probl. Dist. Zond. Zemli Kosm., 13, No. 6, 119 (2016).

    Article  Google Scholar 

  12. M. V. Danilychev, A. N. Nikolaev, and B. G. Kutuza, J. Commun. Technol. Electron., 54, No. 8, 869 (2009).

    Article  Google Scholar 

  13. M. S. Longuet-Higgins, J. Fluid Mech., 17, No. 3, 459 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  14. Y. Hou, G. Song, X. Zhao, et al., Chin. J. Oceanol. Limnol., 24, No. 1, 1 (2006).

    Article  ADS  Google Scholar 

  15. A. S. Zapevalov, A. N. Bol’shakov, and V. E. Smolov, Okeanology, 51, No. 3, 407 (2011).

    Article  ADS  Google Scholar 

  16. A. S. Zapevalov, Phys. Oceanogr., 12, No. 1, 24 (2002).

    Article  Google Scholar 

  17. K. V. Pokazeev, A. S. Zapevalov, V. V. Pustovoytenko, Moscow Univ. Phys. Bull., 68, No. 5, 420 (2013).

    Article  ADS  Google Scholar 

  18. L. M. Brekhovskikh, Zh. Éksp. Teor. Fiz., 23, No. 3, 275 (1952).

    MathSciNet  Google Scholar 

  19. M. S. Longuet-Higgins, Philos. Trans. R. Soc. London A, 249, No. 966, 321 (1957).

    Article  ADS  Google Scholar 

  20. X. Chu, Y. He, and G. Chen, IEEE Trans. Geosci. Rem. Sens., 50, 4014 (2012).

    Article  ADS  Google Scholar 

  21. P. Chen, Q. Yin, and P. Huang, Chin. J. Oceanol. Limnol., 33, No. 5, 1142 (2015).

    Article  ADS  Google Scholar 

  22. T. T. Wilheit, IEEE Trans. Geosci. Electron., GE-17, No. 4, 244 (1979).

    Article  ADS  Google Scholar 

  23. A. S. Zapevalov, Atmos. Ocean. Opt., 31, No. 1, 91 (2018).

    Article  Google Scholar 

  24. V. I. Tatarskii, J. Atmos. Ocean. Technol., 20, 1697 (2003).

    Article  ADS  Google Scholar 

  25. A. S. Zapevalov and V. V. Pustovoitenko, Radiophys. Quantum Electron., 53, No. 2, 100 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zapevalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 61, No. 1, pp. 24–33, January 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapevalov, A.S. Errors in Radar Measurements of the Sea-Surface Large-Scale Slopes Due to the Sea-Wave Nonlinearity. Radiophys Quantum El 61, 22–30 (2018). https://doi.org/10.1007/s11141-018-9866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-018-9866-7

Navigation