Skip to main content
Log in

Regimes of Generation in Low-Q Distributed-Feedback Lasers with Strong Inhomogeneous Broadening of the Active Medium

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We study the influence of the ratio between the relaxation rates of the field in a cavity and the polarization of active centers on the dynamic properties of the distributed-feedback lasers by means of 1D numerical simulation. The model of a two-level active medium with strong inhomogeneous broadening of the spectral line under CW wide-band pumping that provides two- or several-mode lasing in the vicinity of the Bragg photonic band gap is used. Evolution of the dynamic spectra and oscillograms of the laser emission with decreasing Q-factor of the Bragg resonator is analyzed. It is shown, in particular, that under conditions of the dominant role of the superradiant effects, there are unique opportunities for control of both quantitative and qualitative characteristics of lasing, including the spectral width, duration, and coherence length of various pulse components of the output radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I.Khanin, Principles of Laser Dynamics, North-Holland, Amsterdam (1995).

  2. Vl. V.Kocharovsky, A. A. Belyanin, E.R.Kocharovskaya, and V.V.Kocharovsky, in: Advanced Lasers: Laser Physics and Technology for Applied and Fundamental Science, Springer Series in Optical Sciences, 193, (2015), p. 49.

  3. A. A. Belyanin, V. V.Kocharovsky, and Vl. V.Kocharovsky, Quantum Semiclass. Opt. (JEOS, Part B), 9, No. 1, 1 (1997).

  4. F.T. Arecchi and R.G.Harrison, Instabilities and Chaos in Quantum Optics, Springer Verlag, London (2011).

    Google Scholar 

  5. J.Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos. Springer Series in Optical Sciences, 3rd ed., 111 (2013).

  6. C. O.Weiss, in: Instabilities and Chaos in Quantum Optics II, Plenum, New York (1988), p. 41.

  7. L.W. Casperson, M.Tarroja, and H.Fe, JOSA B, 8, 250 (1991).

    Article  ADS  Google Scholar 

  8. F. Prati, E. M. Pessina, G. J. de Varcarcel, and E. Roldan, Opt. Commun., 237, 189 (2004).

    Article  ADS  Google Scholar 

  9. E.Roldán, G. J. de Varc´arcel, F. Prati, et al., in: Trends in Spatiotemporal Dynamics in Lasers, Instabilities, Polarization Dynamics, and Spatial Structures, Research Signpost, Trivandrum, India (2005), p. 1.

  10. V. V. Zheleznyakov, V. V.Kocharovskii, and Vl. V.Kocharovskii, Phys. Usp., 32, No. 10, 835 (1989).

  11. V. V. Zheleznyakov, V. V.Kocharovsky, Vl. V.Kocharovsky, J. Exp. Theor. Phys., 60, 897 (1984).

  12. V. V. Zheleznyakov, V. V.Kocharovsky, and Vl. V.Kocharovsky, Phys. Usp., 89, No. 11, 1059 (1986).

  13. C.O.Weiss, R. Vilasecar, N. B. Abraham, et al., Appl. Phys. B, 61, 223 (1995).

    Article  ADS  Google Scholar 

  14. P. Chenkosol and L.W. Casperson, JOSA B, 24, 1199 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Chenkosol and L.W. Casperson, JOSA B, 20, 2539 (2003).

    Article  ADS  Google Scholar 

  16. M.Tarroja, H. Fe, M. Sharafi, and L.W.Casperson, JOSA B, 6, 1564 (1989).

    Article  ADS  Google Scholar 

  17. J. L. Font, R. Vilaseca, F. Prati, and E. Roldan, Opt. Commun., 261, 336 (2006).

    Article  ADS  Google Scholar 

  18. J. Jahanpanah and H. R. Eslami, Opt. Commun., 293, 102 (2013).

    Article  ADS  Google Scholar 

  19. T.Voigt, M.O. Lenz, F.Mitschke, et al., Appl. Phys. B, 79, 175 (2004).

    Article  Google Scholar 

  20. N. S.Ginzburg, E. R. Kocharovskaya, A. S. Sergeev, and A.A.Telnykh, in: Proc. SPIE, 7138, Photonics, Devices, and Systems IV (2008), p. 71381C.

  21. E.R.Kocharovskaya, N. S. Ginzburg, and A. S. Sergeev, Quantum Electron., 41, 722 (2011).

    Article  ADS  Google Scholar 

  22. F. Meinardi, M.Cerminara, A. Sassella, et al., Phys. Rev. Lett., 91, 247401 (2003).

    Article  ADS  Google Scholar 

  23. G. Lanzani, The Photophysics Behind Photovoltaics and Photonics, Wiley, New York (2012), p. 47.

    Book  Google Scholar 

  24. D. H. Arias, K. W. Stone, S. M. Vlaming, et al., J. Phys. Chem. B, 117, 4553 (2013).

    Article  Google Scholar 

  25. G.M.Akselerod, E. R.Young, K.W. Stone, et al., Phys. Rev. B, 90, 035209 (2014).

    Article  ADS  Google Scholar 

  26. S. Slama, G.Krenz, S. Bux, et al., Phys. Rev. A, 75, 063620 (2007).

    Article  ADS  Google Scholar 

  27. D. Meiser, Jun Ye, D.R.Carlson, and M. J. Holland, Phys. Rev. Lett., 102, 163601 (2009).

  28. D. Meiser and M. J.Holland, Phys. Rev. A, 81, 033847 (2010).

    Article  ADS  Google Scholar 

  29. J. A. Greenberg and D. J.Gauthier, Phys. Rev. A, 86, 013823 (2012).

    Article  ADS  Google Scholar 

  30. J. G. Bohnet, Z.Chen, J.M.Weiner, et al., Nature, 484, 78 (2012).

    Article  ADS  Google Scholar 

  31. R.Florian, L. Schwan, and D. Schmid, Phys. Rev. A, 29, 2709 (1984).

    Article  ADS  Google Scholar 

  32. M. S. Malcuit, J. J. Maki, D. J. Simkin, and R.W.Boyd, Phys. Rev. Lett., 59, 1189 (1987).

    Article  ADS  Google Scholar 

  33. Y. D. Jho, X.Wang, J.Kono, et al., Phys. Rev. Lett., 96, 237401 (2006).

    Article  ADS  Google Scholar 

  34. Y. D. Jho, X.Wang, D.H.Reitze, et al., Phys. Rev. B, 81, 155314 (2010).

    Article  ADS  Google Scholar 

  35. M. Scheibner, T. Schmidt, L.Worschech, et al., Nature Phys., 3, 106 (2007).

    Article  ADS  Google Scholar 

  36. J.H.Kim, G.T. Noe II, S. A. McGill, et al., Sci. Reports, 3, 3283 (2013).

    ADS  Google Scholar 

  37. Vl. V.Kocharovsky, P. A.Kalinin, E.R.Kocharovskaya, and V. V.Kocharovsky, in: Nonlinear Waves 2012 [in Russian], Inst. Appl. Phys. Rus. Acad. Sci., Nizhny Novgorod (2013), p. 398.

  38. H.Kogelnik and C.V. Shank, J. Appl. Phys., 43, No. 5, 2327 (1972).

    Article  ADS  Google Scholar 

  39. D. C. Flanders, H.Kogelnik, C.V. Shank, and R.D. Stanley, Appl. Phys. Lett., 25, 651 (1974).

    Article  ADS  Google Scholar 

  40. V. L.Bratman, N. S.Ginzburg, and G.G.Denisov, Pis’ma Zh. Tekh. Fiz., 7, 1320 (1981).

    Google Scholar 

  41. V. L.Bratman, N. S.Ginzburg, and G.G.Denisov, in: Relativistic Hihg-Frequency Electronics [in Russian], Inst. Appl. Phys. USSR Acad. Sci., Gorky (1981), No. 2, p. 237.

  42. L. Zhu, A. Scherer, and A.Yariv, IEEE J. Quantum Electron., 43, 934 (2007).

    Article  ADS  Google Scholar 

  43. A.Mock, L. Lu, E. Y.Hwang, et al., IEEE J. Sel. Top. Quantum Electron., 15, 892 (2009).

    Article  Google Scholar 

  44. S. Akiba, Encyclopedic Handbook of Integrated Optics, CRC Press-Taylor and Francis Group, Boca–Raton–London–New York (2005).

    Google Scholar 

  45. S.K.Turitsyn, S.A.Babin, D.V.Churkin, et al., Phys. Reports, 542, 133 (2014).

    Article  ADS  Google Scholar 

  46. V. V.Kocharovsky, Kocharovsky Vl. V., and E.R.Golubyatnikova, Computers Math. Applic., 34, 773 (1997).

  47. N. S.Ginzburg, E. R. Kocharovsksaya, and A. S. Sergeev, Bull. Rus. Acad. Sci. Phys., 72, 226 (2008).

    Google Scholar 

  48. E.R.Kocharovskaya, N. S. Ginzburg, and A. S. Sergeev, Bull. Rus. Acad. Sci. Phys., 74, 904 (2010).

    Article  Google Scholar 

  49. Vl. V.Kocharovsky, M. A. Garasev, P. A.Kalinin, and E. R.Kocharovskaya, in: Proc. II Symp. Coherent Optical Radiation of Semiconductor Compounds and Structures, November 16–18, 2009, Moscow–Zvenigorod [in Russian], p. 68.

  50. I. L.Krestnikov, N.N. Ledentsov, A.Hofmann, and D.Bimberg, Phys. Stat. Sol. (a), 183, 207 (2001).

  51. P.Qiao, C.-Y. Lu., D.Bimberg, S. L.Chuang, Opt. Express, 21, 30336 (2013).

  52. A. G.Kuzmenkov, V. M. Ustinov, G. S. Sokolovskii, et al., Appl. Phys. Lett., 91, 121106 (2007).

    Article  ADS  Google Scholar 

  53. T. D. Germann, A. Strittmatter, J.Pohl, et al., Appl. Phys. Lett., 92, 101123 (2008).

    Article  ADS  Google Scholar 

  54. A. Yariv and P. Yeh, Optical Waves and Crystals, Propagation and Control of Laser Radiation, Wiley, New York (2003).

    Google Scholar 

  55. F. Haake, M. I.Kolobov, S. Seeger, et al., Phys. Rev. A, 54, 1625 (1996).

    Article  ADS  Google Scholar 

  56. D.Yu and J.Chen, J. Phys. B, 40, F105 (2010); Phys. Rev. A, 81, 053809 (2010).

  57. P. Chenkosol and L.W. Casperson, JOSA B, 26, 939 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  58. G. J. de Varcárcel, E.Roldán, and F. Prati, Opt. Commun., 216, 203 (2003).

    Article  ADS  Google Scholar 

  59. J. Jahanpanah and A.A. Rahdar, Opt. Laser Technol., 44, 2135 (2012).

    Article  ADS  Google Scholar 

  60. K. Ikeda, K.Otsuka, and K. Matsumoto, Prog. Theor. Phys. Suppl., 99, 295 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  61. L.W. Casperson, JOSA B, 5, 958 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Kocharovskaya.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 59, No. 6, pp. 535–553, June 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharovskaya, E.R., Ginzburg, N.S., Sergeev, A.S. et al. Regimes of Generation in Low-Q Distributed-Feedback Lasers with Strong Inhomogeneous Broadening of the Active Medium. Radiophys Quantum El 59, 484–500 (2016). https://doi.org/10.1007/s11141-016-9717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9717-3

Navigation