Skip to main content
Log in

On generalized Ramanujan primes

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

In this paper, we establish several results concerning the generalized Ramanujan primes. For \(n\in \mathbb {N}\) and \(k \in \mathbb {R}_{> 1}\), we give estimates for the \(n\)th \(k\)-Ramanujan prime, which lead both to generalizations and to improvements of the results presently in the literature. Moreover, we obtain results about the distribution of \(k\)-Ramanujan primes. In addition, we find explicit formulae for certain \(n\)th \(k\)-Ramanujan primes. As an application, we prove that a conjecture of Mitra et al. (arXiv:0906.0104v1, 2009) concerning the number of primes in certain intervals holds for every sufficiently large positive integer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amersi, N., Beckwith, O., Miller, S.J., Ronan, R., Sondow, J.: Generalized Ramanujan Primes, Combinatorial and Additive Number Theory. Proceedings in Mathematics & Statistics, CANT 2011 and 2012, vol. 101, pp. 1–13. Springer, New York (2014)

  2. Axler, C.: New bounds for the prime counting function \(\pi (x)\). arXiv:1409.1780 (2014)

  3. Dusart, P.: Autour de la fonction qui compte le nombre de nombres premiers. Dissertation, Université de Limoges (1998)

  4. Dusart, P.: The \(k\)th prime is greater than \(k(\ln k+\ln \ln k - 1)\) for \(k\ge 2\). Math. Comput. 68, 411–415 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dusart, P.: Estimates of some functions over primes without R.H. arXiv:1002.0442v1 (2010)

  6. Erdös, P.: Beweis eines Satzes von Tschebyschef. Acta Litt. Sci. Szeged 5, 194–198 (1932)

    Google Scholar 

  7. Ishikawa, H.: Über die Verteilung der Primzahlen. Sci. Rep. Tokyo Bunrika Daigaku 2, 27–40 (1934)

    Google Scholar 

  8. Laishram, S.: On a conjecture on Ramanujan primes. Int. J. Number Theory 6, 1869–1873 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mitra, A., Paul, G., Sarkar, U.: Some conjectures on the number of primes in certain intervals. arXiv:0906.0104v1 (2009)

  10. Montgomery, H.L., Vaughan, R.C.: The large sieve. Mathematika 20, 119–134 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nicholson, J.W.: Sequence A214934, The on-line encyclopedia of integer sequences. http://oeis.org/A214934. Accessed 13 Apr 2015

  12. Panaitopol, L.: A formula for \(\pi (x)\) applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. 5(1), 55–56 (2000)

    MathSciNet  Google Scholar 

  13. Ramanujan, S.: A proof of Bertrand’s postulate. J. Indian Math. Soc. 11, 181–182 (1919)

    Google Scholar 

  14. Rosser, J.B.: The \(n\)-th prime is greater than \(n \log n\). Proc. Lond. Math. Soc. 45, 21–44 (1939)

    Article  Google Scholar 

  15. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962)

    MATH  MathSciNet  Google Scholar 

  16. Shevelev, V.: Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012), Article 12.1.1

  17. Sondow, J.: Ramanujan primes and Bertrand’s Postulate. Am. Math. Monthly 116, 630–635 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sondow, J.: Sequence A104272. The on-line encyclopedia of integer sequences. http://oeis.org/A104272. Accessed 13 Apr 2015

  19. Sondow, J.: Sequence A233739. The on-line encyclopedia of integer sequences. http://oeis.org/A233739. Accessed 13 Apr 2015

  20. Sondow, J., Nicholson, J.W., Noe, T.D.: Ramanujan primes: Bounds, Runs, Twins, and Gaps. J. Integer Seq. 14 (2011), Article 11.6.2

  21. Srinivasan, A.: An upper bound for Ramanujan primes. Integers 19 (2014), #A19

  22. Tchebychev, P.: Mémoire sur les nombres premiers. Mémoires des savants étrangers de l’Acad. Sci. St.Pétersbourg 7 (1850), 17–33 [Also, Journal de mathématiques pures et appliques 17 (1852), 366–390]

  23. Trost, E.: Primzahlen. Birkhäuser, Basel/Stuttgart (1953)

    MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Benjamin Klopsch for the helpful conversations. Also I would like to thank Elena Klimenko and Anitha Thillaisundaram for their careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Axler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axler, C. On generalized Ramanujan primes. Ramanujan J 39, 1–30 (2016). https://doi.org/10.1007/s11139-015-9693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-015-9693-9

Keywords

Mathematics Subject Classification

Navigation