Skip to main content
Log in

Measurement properties of the Boston Carpal Tunnel Questionnaire in subjects with neurophysiological confirmation of carpal tunnel syndrome: a Rasch analysis perspective

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

To perform a comprehensive psychometric analysis of the Boston Carpal Tunnel Syndrome Questionnaire (BCTQ) by means of factor and Rasch analyses in subjects with neurophysiologic confirmation of carpal tunnel syndrome (CTS). Relationship between clinical severity assessed with the log-linear version of the BCTQ and neurophysiologic severity assessed with nerve conduction studies was further examined.

Methods

Five hundred and twenty-eight individuals completed the questionnaire. Confirmatory and exploratory factor analyses were used to determine the latent structure of the BCTQ. Through Rasch methodology, a log-linear version was proposed given the latent structure of the questionnaire. Linear relationship between the proposed questionnaire and neurophysiologic findings was established.

Results

The BCTQ underlying structure comprises, at least, three factors that may be represented by Functionality, Paresthesia and Pain domains. Two log-linear subscales may be proposed: subscale 1 comprised of the Functionality factor and subscale 2 which incorporates the Paresthesia and Pain factors under a bifactor solution. Neurophysiologic and clinical severity classification system displays a very weak linear correlation.

Conclusion

A log-linear version of the BCTQ, useful as an outcome tool in clinical and trial settings, is proposed. Neurophysiological data lack the ability to resemble changes in clinical status of individuals with CTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wipperman, J., & Goerl, K. (2016). Carpal Tunnel Syndrome: Diagnosis and management. American Family Physician, 94(12), 993–999

    PubMed  Google Scholar 

  2. Levine, D. W., Simmons, B. P., Koris, M. J., Daltroy, L. H., Hohl, G. G., Fossel, A. H., et al. (1993). A self-administered questionnaire for the assessment of severity of symptoms and functional status in carpal tunnel syndrome. Journal of Bone and Joint Surgery American, 75(11), 1585–1592

    Article  CAS  Google Scholar 

  3. Patrick, D. L., Burke, L. B., Powers, J. H., Scott, J. A., Rock, E. P., Dawisha, S., et al. (2007). Patient-reported outcomes to support medical product labeling claims: FDA perspective. Value Health., 10(Suppl 2), S125–S137

    Article  PubMed  Google Scholar 

  4. MacDermid, J. C. (2014). Patient-reported outcomes: state-of-the-art hand surgery and future applications. Hand Clinics, 30(3), 293–304

    Article  PubMed  Google Scholar 

  5. Bravini, E., Franchignoni, F., Giordano, A., Sartorio, F., Ferriero, G., Vercelli, S., et al. (2015). Classical test theory and Rasch analysis validation of the Upper Limb Functional Index in subjects with upper limb musculoskeletal disorders. Archives of Physical Medicine and Rehabilitation, 96(1), 98–104

    Article  PubMed  Google Scholar 

  6. Amadio, P. C., Silverstein, M. D., Ilstrup, D. M., Schleck, C. D., & Jensen, L. M. (1996). Outcome assessment for carpal tunnel surgery: The relative responsiveness of generic, arthritis-specific, disease-specific, and physical examination measures. J Hand Surg Am., 21(3), 338–346

    Article  CAS  PubMed  Google Scholar 

  7. Atroshi I, Johnsson R, Sprinchorn A. (1998). Self-administered outcome instrument in carpal tunnel syndrome. Reliability validity and responsiveness evaluated in 102 patients. Acta Orthopaedica Scandinavica, 69(1), 82–88.

  8. Bessette, L., Sangha, O., Kuntz, K. M., Keller, R. B., Lew, R. A., Fossel, A. H., et al. (1998). Comparative responsiveness of generic versus disease-specific and weighted versus unweighted health status measures in carpal tunnel syndrome. Medical Care, 36(4), 491–502

    Article  CAS  PubMed  Google Scholar 

  9. Gay, R. E., Amadio, P. C., & Johnson, J. C. (2003). Comparative responsiveness of the disabilities of the arm, shoulder, and hand, the carpal tunnel questionnaire, and the SF-36 to clinical change after carpal tunnel release. Journal of Hand Surgery America, 28(2), 250–254

    Article  Google Scholar 

  10. Greenslade, J. R., Mehta, R. L., Belward, P., & Warwick, D. J. (2004). Dash and Boston questionnaire assessment of carpal tunnel syndrome outcome: What is the responsiveness of an outcome questionnaire? Journal of Hand Surgery British, 29(2), 159–164

    Article  CAS  Google Scholar 

  11. Rosales RS, Delgado EB, de la Lastra-Bosch ID. Evaluation of the Spanish version of the DASH and carpal tunnel syndrome health-related quality-of-life instruments: cross-cultural adaptation process and reliability. Journal of Hand Surgery America. 2002;27(2):334–43.

  12. Atroshi, I., Lyren, P. E., & Gummesson, C. (2009). The 6-item CTS symptoms scale: A brief outcomes measure for carpal tunnel syndrome. Quality of Life Research, 18(3), 347–358

    Article  PubMed  Google Scholar 

  13. De Kleermaeker, F., Levels, M., Verhagen, W. I. M., & Meulstee, J. (2019). Validation of the Dutch version of the Boston Carpal Tunnel Questionnaire. Frontiers in Neurology, 10, 1154

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lue, Y. J., Wu, Y. Y., Liu, Y. F., Lin, G. T., & Lu, Y. M. (2015). Confirmatory factor analysis of the Boston Carpal Tunnel Questionnaire. Journal of Occupational Rehabilitation, 25(4), 717–724

    Article  PubMed  Google Scholar 

  15. de Campos, C. C., Manzano, G. M., de Andrade, L. B., Castelo Filho, A., & Nobrega, J. A. (2003). Translation and validation of an instrument for evaluation of severity of symptoms and the functional status in carpal tunnel syndrome. Arquivos de Neuro-Psiquiatria, 61(1), 51–55

    Article  PubMed  Google Scholar 

  16. Imaeda, T., Uchiyama, S., Toh, S., Wada, T., Okinaga, S., Sawaizumi, T., et al. (2007). Validation of the Japanese Society for Surgery of the Hand version of the Carpal Tunnel Syndrome Instrument. Journal of Orthopaedic Science, 12(1), 14–21

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ortiz-Corredor, F., Calambas, N., Mendoza-Pulido, C., Galeano, J., Diaz-Ruiz, J., & Delgado, O. (2011). Factor analysis of carpal tunnel syndrome questionnaire in relation to nerve conduction studies. Clinical Neurophysiology, 122(10), 2067–2070

    Article  PubMed  Google Scholar 

  18. Conrad, K. J., & Smith, E. V., Jr. (2004). International conference on objective measurement: Applications of Rasch analysis in health care. Medical Care, 42(1 Suppl), I1-6

    Article  PubMed  Google Scholar 

  19. Tennant, A., & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis and Rheumatism, 57(8), 1358–1362

    Article  PubMed  Google Scholar 

  20. Tesio, L. (2007). Functional assessment in rehabilitative medicine: Principles and methods. Europa Medicophysica, 43(4), 515–523

    CAS  PubMed  Google Scholar 

  21. Wade, D. T. (1999). Outcome measurement and rehabilitation. Clinical Rehabilitation, 13(2), 93–95

    Article  CAS  PubMed  Google Scholar 

  22. Forrest, M., & Andersen, B. (1986). Ordinal scale and statistics in medical research. British Medical Journal (Clinical Research Edition), 292(6519), 537–538

    Article  CAS  Google Scholar 

  23. Wright, B. D., & Linacre, J. M. (1989). Observations are always ordinal; measurements, however, must be interval. Archives of Physical Medicine and Rehabilitation, 70(12), 857–860

    CAS  PubMed  Google Scholar 

  24. Nielsen, T., & Dammeyer, J. (2019). Measuring higher education students’ perceived stress: An IRT-based construct validity study of the PSS-10. Studies in Educational Evaluation., 63, 17–25

    Article  Google Scholar 

  25. Hong, I., & Bonilha, H. S. (2017). Psychometric properties of upper extremity outcome measures validated by Rasch analysis: A systematic review. International Journal of Rehabilitation Research, 40(1), 1–10

    Article  PubMed  Google Scholar 

  26. Franchignoni, F., Giordano, A., Sartorio, F., Vercelli, S., Pascariello, B., & Ferriero, G. (2010). Suggestions for refinement of the Disabilities of the Arm, Shoulder and Hand Outcome Measure (DASH): a factor analysis and Rasch validation study. Archives of Physical Medicine and Rehabilitation, 91(9), 1370–1377

    Article  PubMed  Google Scholar 

  27. Jablecki, C. K., Andary, M. T., So, Y. T., Wilkins, D. E., & Williams, F. H. (1993). Literature review of the usefulness of nerve conduction studies and electromyography for the evaluation of patients with carpal tunnel syndrome. AAEM Quality Assurance Committee. Muscle Nerve., 16(12), 1392–1414

    CAS  PubMed  Google Scholar 

  28. Mondelli, M., Reale, F., Sicurelli, F., & Padua, L. (2000). Relationship between the self-administered Boston questionnaire and electrophysiological findings in follow-up of surgically-treated carpal tunnel syndrome. J Hand Surg Br., 25(2), 128–134

    Article  CAS  PubMed  Google Scholar 

  29. Padua, L., Padua, R., Lo Monaco, M., Aprile, I., & Tonali, P. (1999). Multiperspective assessment of carpal tunnel syndrome: a multicenter study. Italian CTS Study Group. Neurology, 53(8), 1654–1659

    Article  CAS  PubMed  Google Scholar 

  30. Ortiz-Corredor, F., & Lopez-Monsalve, A. (2009). Using neurophysiological reference values as an approach to carpal tunnel syndrome diagnosis. Revista de Salud Pública (Bogotá, Colombia), 11(5), 794–801

    Article  Google Scholar 

  31. Padua, L., LoMonaco, M., Gregori, B., Valente, E. M., Padua, R., & Tonali, P. (1997). Neurophysiological classification and sensitivity in 500 carpal tunnel syndrome hands. Acta Neurologica Scandinavica, 96(4), 211–217

    Article  CAS  PubMed  Google Scholar 

  32. Team RC. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  33. Revelle W. (2016). psych: Procedures for Personality and Psychological Research. Northwestern University, Evanston, Illinois, USA: https://CRAN.R-project.org/package=psych Version = 1.6.9

  34. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software., 48(2), 1–36

    Article  Google Scholar 

  35. Andrich, D., Sheridan, B., & Luo, G. (2010). Rasch models for measurement: RUMM2030. RUMM Laboratory Pty Ltd.

    Google Scholar 

  36. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299

    Article  Google Scholar 

  37. Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods., 7(2), 191–205

    Article  Google Scholar 

  38. Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209–220

    Article  PubMed  Google Scholar 

  39. Revelle, W., & Rocklin, T. (1979). Very simple structure: an alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behaviour Research, 14(4), 403–414

    Article  CAS  Google Scholar 

  40. Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 24(2), 321–327

    Article  Google Scholar 

  41. Goldberg, L. R., & Velicer, W. F. (2006). Principles of exploratory factor analysis. In S. Strack (Ed.), Differentiating normal and abnormal personality. (pp. 209–237). Springer Publishing Co.

    Google Scholar 

  42. Lee, C. T., Zhang, G., & Edwards, M. C. (2012). Ordinary least squares estimation of parameters in exploratory factor analysis with ordinal data. Multivariate Behaviour Research, 47(2), 314–339

    Article  Google Scholar 

  43. Schmitt, T. A. (2011). Current methodological considerations in exploratory and confirmatory factor analysis. Journal of Psychoeducational Assessment, 29(4), 304–321

    Article  Google Scholar 

  44. Krijnen, W. P. (1996). Algorithms for unweighted least-squares factor analysis. Computational Statistics & Data Analysis, 21(2), 133–147

    Article  Google Scholar 

  45. Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample size to the stability of component patterns. Psychological Bulletin, 103(2), 265–275

    Article  PubMed  Google Scholar 

  46. Christensen, K. B., Makransky, G., & Horton, M. (2017). Critical values for Yen’s Q3: identification of local dependence in the Rasch model using residual correlations. Applied Psychological Measurement, 41(3), 178–194

    Article  PubMed  Google Scholar 

  47. Pomeroy, I. M., Tennat, A., Mills, R. J., & Young, C. A. (2020). The WHOQOL-BREF: A modern psychometric evaluation of its internal construct validity in people with multiple sclerosis. Quality of Life Research, 29(7), 1961–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological Methods, 21(2), 137–150

    Article  PubMed  Google Scholar 

  49. Andrich, D. (2016). Components of variance of scales with a bifactor subscale structure from Twwo calculations of α. Educational Measurement: Issues and Practice., 35(4), 24–30

    Article  Google Scholar 

  50. Leite, J. C., Jerosch-Herold, C., & Song, F. (2006). A systematic review of the psychometric properties of the Boston Carpal Tunnel Questionnaire. BMC Musculoskeletal Disorders, 7, 78

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maeda, Y., Kettner, N., Kim, J., Kim, H., Cina, S., Malatesta, C., et al. (2016). Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain, 157(5), 1085–1093

    Article  PubMed  Google Scholar 

  52. You, H., Simmons, Z., Freivalds, A., Kothari, M. J., & Naidu, S. H. (1999). Relationships between clinical symptom severity scales and nerve conduction measures in carpal tunnel syndrome. Muscle and Nerve, 22(4), 497–501

    Article  CAS  PubMed  Google Scholar 

  53. Nora, D. B., Becker, J., Ehlers, J. A., & Gomes, I. (2005). What symptoms are truly caused by median nerve compression in carpal tunnel syndrome? Clinical Neurophysiology, 116(2), 275–283

    Article  PubMed  Google Scholar 

  54. Nora, D. B., Becker, J., Ehlers, J. A., & Gomes, I. (2004). Clinical features of 1039 patients with neurophysiological diagnosis of carpal tunnel syndrome. Clinical Neurology and Neurosurgery, 107(1), 64–69

    Article  PubMed  Google Scholar 

  55. Alfonso, C., Jann, S., Massa, R., & Torreggiani, A. (2010). Diagnosis, treatment and follow-up of the carpal tunnel syndrome: a review. Neurological Sciences, 31(3), 243–252

    Article  PubMed  Google Scholar 

  56. Peters, S., Johnston, V., Hines, S., Ross, M., & Coppieters, M. (2016). Prognostic factors for return-to-work following surgery for carpal tunnel syndrome: a systematic review. JBI Database of Systematic Reviews and Implementation Reports, 14(9), 135–216

    Article  PubMed  Google Scholar 

  57. Luckhaupt, S. E., Dahlhamer, J. M., Ward, B. W., Sweeney, M. H., Sestito, J. P., & Calvert, G. M. (2013). Prevalence and work-relatedness of carpal tunnel syndrome in the working population, United States, 2010 National Health Interview Survey. American Journal of Industrial Medicine, 56(6), 615–624

    Article  PubMed  Google Scholar 

  58. Dimberg, E. L. (2011). The office evaluation of weakness. Seminars in Neurology, 31(1), 115–130

    Article  PubMed  Google Scholar 

  59. Stone, J., & Aybek, S. (2016). Functional limb weakness and paralysis. Handbook of Clinical Neurology, 139, 213–228

    Article  CAS  PubMed  Google Scholar 

  60. Multanen, J., Ylinen, J., Karjalainen, T., Ikonen, J., Häkkinen, A., & Repo, J. P. (2020). Structural validity of th Boston Carpal Tunnel Questionnaire and its short version, the 6-Item CTS symptoms scale: A Rasch analysis one year after surgery. BMC Musculoskeletal Disorders, 21(1), 609

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Alvaro J. Ruiz-Morales, Martin Rondon-Sepulveda and Ivan Alfredo Mendoza for their advice on methodology

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Mendoza-Pulido.

Ethics declarations

Conflict of interest

Authors of this manuscript declare that they have no conflict of interest.

Ethical approval

No animal subjects were involved in the research. All subjects attend to authors’ institution sign anonymity and confidentiality forms. This project was approved by authors’ institution Committee on Medical Ethics and Research (Number 2018-90).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Pulido, C., Ortiz-Corredor, F. Measurement properties of the Boston Carpal Tunnel Questionnaire in subjects with neurophysiological confirmation of carpal tunnel syndrome: a Rasch analysis perspective. Qual Life Res 30, 2697–2710 (2021). https://doi.org/10.1007/s11136-021-02860-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-021-02860-y

Keywords

Navigation