Skip to main content
Log in

Comparison of EQ-5D-3L and metabolic components between patients with hyperhidrosis and the general population: a propensity score matching analysis

  • Published:
Quality of Life Research Aims and scope Submit manuscript

Abstract

Purpose

It is important to understand the characteristics of patients with hyperhidrosis, which are different from the general population, for treating hyperhidrosis. Sympathetic overactivity, which might play an important role in hyperhidrosis, can contribute to metabolic diseases and the decreased quality of life (QoL). We compared the metabolic components and health-related QoL between patients with hyperhidrosis and the general population.

Methods

We conducted a case-control study and compared the characteristics of the patients (N = 196) with hyperhidrosis and propensity score-matched controls (N = 196) selected from the Korean National Health and Nutrition Examination Survey. Metabolic components and EQ-5D-3L (EQ-5D) index were compared using a two-way mixed analysis of covariance after adjusting for confounders.

Results

Patients with hyperhidrosis had significantly higher waist circumference (estimated mean values ± SD for patients and the control group, 85.5  ±  10.8 cm vs 81.3  ±  10.3 cm, p < 0.001), blood pressure (SBP, 121.1  ±  16.9 vs 111.7  ±  10.3, p < 0.001 AND DBP, 77.5  ±  12.8 vs 73.6  ±  8.6, p < 0.001, respectively), fasting glucose (97.1  ±  11.3 vs 91.5  ±  9.2, p < 0.001), and the number of components of metabolic syndrome (1.4  ±  1.3 vs 1.0  ±  1.2, p = 0.002), and significantly lower estimated glomerular filtration rate (144.3  ±  53.2 vs 158.3  ±  55.7, p = 0.002) and EQ-5D values (estimated mean values (standard error) for patients and the control group, 0.92 (0.01) vs 0.97 (0.01), p < 0.001) compared to the control group after adjustment.

Conclusion

The patients with hyperhidrosis had more central obesity and unfavorable metabolic parameters and a lower EQ-5D index compared with the general population, emphasizing clinical importance of hyperhidrosis to be cured in aspect of metabolic components as well as patients’ QOL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park, J.-M., Moon, D. H., Lee, H. S., Park, J.-Y., Lee, J.-W., & Lee, S. (2019). Hyperhidrosis, endoscopic thoracic sympathectomy, and cardiovascular outcomes: A cohort study based on the Korean health insurance review and assessment service database. International Journal of Environmental Research and Public Health, 16(20), 3925.

    Article  PubMed Central  Google Scholar 

  2. Henning, M., Pedersen, O., & Jemec, G. (2019). Genetic disposition to primary hyperhidrosis: A review of literature. Archives of Dermatological Research, 311(10), 1–6.

    Article  Google Scholar 

  3. Lai, F.-C., Tu, Y.-R., Li, Y.-P., Li, X., Lin, M., Chen, J.-F., et al. (2015). Nation Wide epidemiological survey of primary palmar hyperhidrosis in the People’s Republic of China. Clinical Autonomic Research, 25(2), 105–108.

    Article  PubMed  Google Scholar 

  4. Strutton, D. R., Kowalski, J. W., Glaser, D. A., & Stang, P. E. (2004). US prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: Results from a national survey. Journal of the American Academy of Dermatology, 51(2), 241–248.

    Article  PubMed  Google Scholar 

  5. Tu, Y.-R., Li, X., Lin, M., Lai, F.-C., Li, Y.-P., Chen, J.-F., et al. (2007). Epidemiological survey of primary palmar hyperhidrosis in adolescent in Fuzhou of People’s Republic of China. European Journal of Cardio-Thoracic Surgery, 31(4), 737–739.

    Article  PubMed  Google Scholar 

  6. Nawrocki, S., & Cha, J. (2019). The etiology, diagnosis, and management of hyperhidrosis: A comprehensive review: Therapeutic options. Journal of the American Academy of Dermatology, 81(3), 669–680.

    Article  PubMed  Google Scholar 

  7. Solish, N., Bertucci, V., Dansereau, A., HONG, H. C. H., Lynde, C., Lupin, M., et al. (2007). A comprehensive approach to the recognition, diagnosis, and severity-based treatment of focal hyperhidrosis: Recommendations of the Canadian hyperhidrosis advisory committee. Dermatologic Surgery, 33(8), 908–923.

    CAS  PubMed  Google Scholar 

  8. Solish, N., Wang, R., & Murray, C. A. (2008). Evaluating the patient presenting with hyperhidrosis. Thoracic Surgery Clinics, 18(2), 133–140.

    Article  PubMed  Google Scholar 

  9. Schlaich, M., Straznicky, N., Lambert, E., & Lambert, G. (2015). Metabolic syndrome: A sympathetic disease? The Lancet Diabetes and Endocrinology, 3(2), 148–157.

    Article  PubMed  Google Scholar 

  10. Martin, C. K., Church, T. S., Thompson, A. M., Earnest, C. P., & Blair, S. N. (2009). Exercise dose and quality of life: A randomized controlled trial. Archives of Internal Medicine, 169(3), 269–278.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wei, Y., Xu, Z.-Q.D., & Li, H. (2020). Quality of life after thoracic sympathectomy for palmar hyperhidrosis: A meta-analysis. General Thoracic and Cardiovascular Surgery, 68(6), 1–8.

    Google Scholar 

  12. de Campos, J. R. M., Kauffman, P., de Campos Werebe, E., Andrade Filho, L. O., Kusniek, S., Wolosker, N., et al. (2003). Quality of life, before and after thoracic sympathectomy: Report on 378 operated patients. The Annals of Thoracic Surgery, 76(3), 886–891.

    Article  PubMed  Google Scholar 

  13. Kumagai, K., Kawase, H., & Kawanishi, M. (2005). Health-related quality of life after thoracoscopic sympathectomy for palmar hyperhidrosis. The Annals of Thoracic Surgery, 80(2), 461–466.

    Article  PubMed  Google Scholar 

  14. Sobrinho, S. S., Fiorelli, R., & Morard, M. (2017). Evaluation of the quality of life of patients with primary hyperhidrosis submitted to videothoracoscopic sympathectomy. Revista do Colegio Brasileiro de Cirurgioes, 44(4), 323–327.

    Google Scholar 

  15. Rabin, R., & de Charro, F. (2001). EQ-5D: A measure of health status from the EuroQol Group. Annals of Medicine, 33(5), 337–343. https://doi.org/10.3109/07853890109002087.

    Article  CAS  PubMed  Google Scholar 

  16. McCaffrey, N., Kaambwa, B., Currow, D. C., & Ratcliffe, J. (2016). Health-related quality of life measured using the EQ-5D–5L: South Australian population norms. Health and Quality of Life Outcomes, 14(1), 133.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kweon, S., Kim, Y., Jang, M.-J., Kim, Y., Kim, K., Choi, S., et al. (2014). Data resource profile: The Korea national health and nutrition examination survey (KNHANES). International Journal of Epidemiology, 43(1), 69–77.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Imai, E., Horio, M., Yamagata, K., Iseki, K., Hara, S., Ura, N., et al. (2008). Slower decline of glomerular filtration rate in the Japanese general population: A longitudinal 10-year follow-up study. Hypertension Research, 31(3), 433–441.

    Article  PubMed  Google Scholar 

  19. Donato, K. A., Eckel, R. H., Franklin, B. A., Gordon, D. J., Krauss, R. M., Savage, P. J., et al. (2005). Diagnosis and management of the metabolic syndrome. Circulation, 112, 2735–2740.

    Article  PubMed  Google Scholar 

  20. Peralta, C. A., Kurella, M., Lo, J. C., & Chertow, G. M. (2006). The metabolic syndrome and chronic kidney disease. Current Opinion in Nephrology and Hypertension, 15(4), 361–365.

    Article  CAS  PubMed  Google Scholar 

  21. Qiu, Y., Zhao, Q., Gu, Y., Wang, N., Yu, Y., Wang, R., et al. (2019). Association of metabolic syndrome and its components with decreased estimated glomerular filtration rate in adults. Annals of Nutrition and Metabolism, 75(3), 168–178.

    Article  CAS  PubMed  Google Scholar 

  22. Parsons, L. S. (2004). Performing a 1: N case-control match on propensity score. In: Proceedings of the 29th annual SAS user's group international conference (Vol.1, p. e11). SAS Institute.

    Google Scholar 

  23. Austin, P. C. (2010). Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score. American Journal of Epidemiology, 172(9), 1092–1097. https://doi.org/10.1093/aje/kwq224.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Coretti, S., Ruggeri, M., & McNamee, P. (2014). The minimum clinically important difference for EQ-5D index: A critical review. Expert Review of Pharmacoeconomics and Outcomes Research, 14(2), 221–233. https://doi.org/10.1586/14737167.2014.894462.

    Article  PubMed  Google Scholar 

  25. Shibasaki, M., & Crandall, C. G. (2010). Mechanisms and controllers of eccrine sweating in humans. Frontiers in Bioscience (Scholar edition), 2, 685.

    Google Scholar 

  26. Harker, M. (2013). Psychological sweating: A systematic review focused on aetiology and cutaneous response. Skin Pharmacology and Physiology, 26(2), 92–100.

    Article  CAS  PubMed  Google Scholar 

  27. Shibasaki, M., Wilson, T. E., & Crandall, C. G. (2006). Neural control and mechanisms of eccrine sweating during heat stress and exercise. Journal of Applied Physiology, 100(5), 1692–1701.

    Article  PubMed  Google Scholar 

  28. Sowers, J. R., & Frohlich, E. D. (2004). Insulin and insulin resistance: Impact on blood pressure and cardiovascular disease. Medical Clinics, 88(1), 63–82.

    CAS  PubMed  Google Scholar 

  29. Iyngkaran, P., Anavekar, N., Majoni, W., & Thomas, M. C. (2013). The role and management of sympathetic overactivity in cardiovascular and renal complications of diabetes. Diabetes and Metabolism, 39(4), 290–298.

    Article  CAS  PubMed  Google Scholar 

  30. Yeung, A. C., Vekshtein, V. I., Krantz, D. S., Vita, J. A., Ryan, T. J., Jr., Ganz, P., et al. (1991). The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. New England Journal of Medicine, 325(22), 1551–1556.

    Article  CAS  PubMed  Google Scholar 

  31. Volders, P. G. (2010). Novel insights into the role of the sympathetic nervous system in cardiac arrhythmogenesis. Heart Rhythm, 7(12), 1900–1906.

    Article  PubMed  Google Scholar 

  32. Ben-David, J., & Zipes, D. P. (1988). Differential response to right and left ansae subclaviae stimulation of early afterdepolarizations and ventricular tachycardia induced by cesium in dogs. Circulation, 78(5), 1241–1250.

    Article  CAS  PubMed  Google Scholar 

  33. Hanich, R., Levine, J., Spear, J., & Moore, E. (1988). Autonomic modulation of ventricular arrhythmia in cesium chloride-induced long QT syndrome. Circulation, 77(5), 1149–1161.

    Article  CAS  PubMed  Google Scholar 

  34. Zoccali, C., Mallamaci, F., Tripepi, G., Parlongo, S., Cutrupi, S., Benedetto, F. A., et al. (2002). Norepinephrine and concentric hypertrophy in patients with end-stage renal disease. Hypertension, 40(1), 41–46.

    Article  CAS  PubMed  Google Scholar 

  35. Canale, M. P., Manca di Villahermosa, S., Martino, G., Rovella, V., Noce, A., De Lorenzo, A., et al. (2013). Obesity-related metabolic syndrome: Mechanisms of sympathetic overactivity. International Journal of Endocrinology, 2013, 1–12.

    Article  Google Scholar 

  36. Smith, M. M., & Minson, C. T. (2012). Obesity and adipokines: Effects on sympathetic overactivity. The Journal of Physiology, 590(8), 1787–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Landsberg, L. (1996). Obesity and the insulin resistance syndrome. Hypertension Research, 19(Suppl I), S51–S55.

    Article  PubMed  Google Scholar 

  38. Reaven, G. M. (2010). Insulin resistance, compensatory hyperinsulinemia, and coronary heart disease: Syndrome X revisited. Comprehensive Physiology, 1, 1169–1197.

    Google Scholar 

  39. Wang, C. C. L., Goalstone, M. L., & Draznin, B. (2004). Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes, 53(11), 2735–2740.

    Article  CAS  PubMed  Google Scholar 

  40. Grassi, G. (2006). Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertension Research, 29(11), 839–847.

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez, G. E., Ballard, T. P., Beske, S. D., & Davy, K. P. (2004). Subcutaneous obesity is not associated with sympathetic neural activation. American Journal of Physiology-Heart and Circulatory Physiology, 287(1), H414–H418.

    Article  CAS  PubMed  Google Scholar 

  42. Kalil, G. Z., & Haynes, W. G. (2012). Sympathetic nervous system in obesity-related hypertension: Mechanisms and clinical implications. Hypertension Research, 35(1), 4–16.

    Article  CAS  PubMed  Google Scholar 

  43. Astman, N., Friedberg, I., Wikstrom, J. D., Derazne, E., Pinhas-Hamiel, O., Afek, A., et al. (2019). The association between obesity and hyperhidrosis: A nationwide, cross-sectional study of 2.77 million Israeli adolescents. Journal of the American Academy of Dermatology, 81(2), 624–627.

    Article  PubMed  Google Scholar 

  44. Haraldstad, K., Wahl, A., Andenæs, R., Andersen, J. R., Andersen, M. H., Beisland, E., et al. (2019). A systematic review of quality of life research in medicine and health sciences. Quality of Life Research, 28(10), 2641–2650. https://doi.org/10.1007/s11136-019-02214-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hamm, H. (2014). Impact of hyperhidrosis on quality of life and its assessment. Dermatologic Clinics, 32(4), 467–476. https://doi.org/10.1016/j.det.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  46. Wade, R., Jones-Diette, J., Wright, K., Layton, A. M., & Woolacott, N. (2019). Hyperhidrosis quality of life measures: Review and patient perspective. Journal of Dermatological Treatment, 30(3), 303–308.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a faculty research grant from Yonsei University College of Medicine (6-2019-0074). This work was supported by the Technology Innovation Program (20002781, A Platform for Prediction and Management of Health Risk Based on Personal Big Data and Lifelogging) funded by the Ministry of Trade, Industry & Energy (MOTIE, South Korea).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hye Sun Lee or Ji-Won Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study followed the ethical guidelines by the 1975 Declaration of Helsinki. All procedures of the study were approved by the Institutional Review Board of Gangnam Severance Hospital (IRB #3-2020-0224).

Consent to participate

All data from this retrospective observational study were obtained through an anonymized dataset.

Consent to publication

Informed consent for publication was obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YC., You, Y.K., Lee, J.H. et al. Comparison of EQ-5D-3L and metabolic components between patients with hyperhidrosis and the general population: a propensity score matching analysis. Qual Life Res 30, 2591–2599 (2021). https://doi.org/10.1007/s11136-021-02856-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11136-021-02856-8

Keywords

Navigation