Skip to main content
Log in

Greenberger–Horne–Zeilinger state generation with linear optical elements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a scheme to probabilistically generate Greenberger–Horne–Zeilinger states encoded on the path degree of freedom of three photons. These photons are totally independent from each other, having no direct interaction during the whole evolution of the protocol, which remarkably requires only linear optical devices to work and two extra ancillary photons to mediate the correlation. The efficacy of the method, which has potential application in distributed quantum computation and multiparty quantum communication, is analyzed in comparison with similar proposals reported in the recent literature. We also discuss the main error sources that limit the efficiency of the protocol in a real experiment and some interesting aspects about the mediator photons in connection with the concept of spatial nonlocality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. (1935). https://doi.org/10.1017/S0305004100013554

    Article  MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: independent condition for local realism? Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (1996). https://doi.org/10.1016/0375-9601(95)00930-2

    Google Scholar 

  3. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech: Theory Exp. (2004). https://doi.org/10.1088/1742-5468/2004/06/P06002

    Article  MathSciNet  MATH  Google Scholar 

  4. Sarovar, M., Ishizaki, A., Fleming, G.R., Whaley, K.B.: Quantum entanglement in photosynthetic light-harvesting complexes. Nat. Phys. (2010). https://doi.org/10.1038/nphys1652

    Article  Google Scholar 

  5. Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortschr. Phys. (2013). https://doi.org/10.1002/prop.201300020

    Article  MathSciNet  MATH  Google Scholar 

  6. Laflorencie, N.: Quantum entanglement in condensed matter systems. Quant. Entanglement Condens. Matter Syst. (2016). https://doi.org/10.1016/j.physrep.2016.06.008

    Article  MathSciNet  Google Scholar 

  7. Rangarajan, R., Goggin, M., Kwiat, P., Lee, K.F., Chen, J., Liang, C., Li, X., Voss, P.L., Kumar, P., Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K., Lu, C.Y., Zhou, X.Q., Guhne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Optimizing type-I polarization-entangled photons “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”. Phys. Rev. Lett. Nat. (1993). https://doi.org/10.1364/OE.17.018920

    Article  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  MathSciNet  MATH  Google Scholar 

  9. Ekert, A.K.: Quantum cryptography based on Bellâs theorem. Phys. Rev. Lett. (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  MathSciNet  MATH  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)

    MATH  Google Scholar 

  11. Dicarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature (2009). https://doi.org/10.1038/nature08121

    Article  Google Scholar 

  12. Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature (2008). https://doi.org/10.1038/nature07125

    Article  Google Scholar 

  13. Nelson, R.J., Cory, D.G., Lloyd, S.: Experimental demonstration of Greenberger–Horne–Zeilinger correlations using nuclear magnetic resonance. Phys. Rev. A (2000). https://doi.org/10.1103/PhysRevA.61.022106

    Article  Google Scholar 

  14. Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. (2007). https://doi.org/10.1038/nphys507

    Article  Google Scholar 

  15. Gómez, S., Mattar, A., Gómez, E.S., Cavalcanti, D., Farías, O.J., Acín, A., Lima, G.: Experimental nonlocality-based randomness generation with nonprojective measurements. Phys. Rev. A (2018). https://doi.org/10.1103/PhysRevA.97.040102

    Article  Google Scholar 

  16. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A—Atomic Mol. Opt. Phys. (2000). https://doi.org/10.1103/PhysRevA.62.062314

    Article  Google Scholar 

  17. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A—Atomic Mol. Opt. Phys (2002). https://doi.org/10.1103/PhysRevA.65.052112

    Article  Google Scholar 

  18. Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett. (2008). https://doi.org/10.1103/PhysRevLett.100.080501

    Article  Google Scholar 

  19. Chaves, R., Aolita, L., Acín, A.: Robust multipartite quantum correlations without complex encodings. Phys. Rev. A—Atomic Mol. Opt. Phys. (2012). https://doi.org/10.1103/PhysRevA.86.020301

    Article  Google Scholar 

  20. Vivoli, V.C., Ribeiro, J., Wehner, S.: High fidelity GHZ generation within nearby nodes. (2018). http://arxiv.org/abs/1805.10663

  21. Friis, N., Marty, O., Maier, C., Hempel, C., Holzäpfel, M., Jurcevic, P., Plenio, M.B., Huber, M., Roos, C., Blatt, R., Lanyon, B.: Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X (2018). https://doi.org/10.1103/PhysRevX.8.021012

    Article  Google Scholar 

  22. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. (1990). https://doi.org/10.1119/1.16243

    Article  MathSciNet  MATH  Google Scholar 

  23. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A—Atomic Mol. Opt. Phys. (2001). https://doi.org/10.1103/PhysRevA.63.054301

    Article  Google Scholar 

  24. Giovannetti, V., Lloyd, S., MacCone, L.: Advances in quantum metrology. Nat. Photonics (2011). https://doi.org/10.1038/nphoton.2011.35

    Article  Google Scholar 

  25. Chaves, R., Brask, J.B., Markiewicz, M., Kołodyński, J., Acín, A.: Noisy metrology beyond the standard quantum limit. Phys. Rev. Lett. (2013). https://doi.org/10.1103/PhysRevLett.111.120401

    Article  Google Scholar 

  26. Kómár, P., Kessler, E.M., Bishof, M., Jiang, L., Sørensen, A.S., Ye, J., Lukin, M.D.: A quantum network of clocks. Nat. Phys. (2014). https://doi.org/10.1038/nphys3000

    Article  Google Scholar 

  27. Anders, J., Browne, D.E.: Computational power of correlations. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.102.050502

    Article  MathSciNet  Google Scholar 

  28. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A—Atomic Mol. Opt. Phys. (1999). https://doi.org/10.1103/PhysRevA.59.1829

    Article  MATH  Google Scholar 

  29. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. (2014). https://doi.org/10.1103/RevModPhys.86.419

    Article  Google Scholar 

  30. Bouwmeester, D., Pan, J.W., Bongaerts, M., Zeilinger, A.: Observation of three-photon Greenberger–Horne–Zeilinger entanglement. Phys. Rev. Lett. (1999). https://doi.org/10.1103/PhysRevLett.82.1345

    Article  MathSciNet  MATH  Google Scholar 

  31. de Lima Bernardo, B.: Unified quantum density matrix description of coherence and polarization. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2017). https://doi.org/10.1016/j.physleta.2017.05.018

    Article  MATH  Google Scholar 

  32. Preskill, J.: Quantum Computation lecture notes for physics 219/computer science 219. http://www.theory.caltech.edu/people/preskill/ph229/

  33. Bergamasco, N., Menotti, M., Sipe, J.E., Liscidini, M.: Generation of path-encoded Greenberger–Horne–Zeilinger states. Phys. Rev. Appl. 8(5), 54014 (2017). https://doi.org/10.1103/PhysRevApplied.8.054014

    Article  ADS  Google Scholar 

  34. Su, X., Tian, C., Deng, X., Li, Q., Xie, C., Peng, K.: Quantum entanglement swapping between two multipartite entangled states. Phys. Rev. Lett. (2016). https://doi.org/10.1103/PhysRevLett.117.240503

    Article  Google Scholar 

  35. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. Sect. A Gen. Atomic Solid State Phys. (2006). https://doi.org/10.1016/j.physleta.2006.01.035

    Article  Google Scholar 

  36. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. (1993). https://doi.org/10.1103/PhysRevLett.71.4287

    Article  Google Scholar 

  37. de Lima Bernardo, B.: How a single photon can mediate entanglement between two others. Ann. Phys. (2016). https://doi.org/10.1016/j.aop.2016.06.018

    Article  MathSciNet  MATH  Google Scholar 

  38. De Lima Bernardo, B., Canabarro, A., Azevedo, S.: How a single particle simultaneously modifies the physical reality of two distant others: a quantum nonlocality and weak value study. Sci. Rep. (2017). https://doi.org/10.1038/srep39767

    Article  Google Scholar 

  39. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. (1987). https://doi.org/10.1103/PhysRevLett.59.2044

    Article  Google Scholar 

  40. Eltschka, C., Osterlohe, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. (2008). https://doi.org/10.1088/1367-2630/10/4/043014

    Article  Google Scholar 

  41. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A—Atomic Mol. Opt. Phys. (1998). https://doi.org/10.1103/PhysRevA.57.822

    Article  Google Scholar 

  42. Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.103.020501

    Article  Google Scholar 

  43. Srivastava, A., Sidler, M., Allain, A.V., Lembke, D.S., Kis, A., Imamoglu, A.: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491 EP (2015). https://doi.org/10.1038/nnano.2015.60

    Article  ADS  Google Scholar 

  44. Chakraborty, C., Kinnischtzke, L., Goodfellow, K.M., Beams, R., Vamivakas, A.N.: Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507 EP (2015). https://doi.org/10.1038/nnano.2015.79

    Article  ADS  Google Scholar 

  45. He, Y.M., Clark, G., Schaibley, J.R., He, Y., Chen, M.C., Wei, Y.J., Ding, X., Zhang, Q., Yao, W., Xu, X., Lu, C.Y., Pan, J.W.: Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497 EP (2015). https://doi.org/10.1038/nnano.2015.75

    Article  ADS  Google Scholar 

  46. Tran, T.T., Bray, K., Ford, M.J., Toth, M., Aharonovich, I.: Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37 EP (2015). https://doi.org/10.1038/nnano.2015.242

    Article  ADS  Google Scholar 

  47. Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016). https://doi.org/10.1038/nphoton.2016.186

    Article  ADS  Google Scholar 

  48. Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. (2012). https://doi.org/10.1103/RevModPhys.84.777

    Article  Google Scholar 

  49. Lopes, R., Imanaliev, A., Aspect, A., Cheneau, M., Boiron, D., Westbrook, C.I.: Atomic Hong–Ou–Mandel experiment. Nature (2015). https://doi.org/10.1038/nature14331

    Article  Google Scholar 

  50. Kaufman, A.M., Tichy, M.C., Mintert, F., Rey, A.M., Regal, C.A.: The Hong–Ou–Mandel effect with atoms. Nature (2018). https://doi.org/10.1016/bs.aamop.2018.03.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian funding agency CNPq (AC’s Universal Grant No. 423713/2016-7, BLB’s PQ Grant No. 309292/2016-6), UFAL (AC’s paid license for scientific cooperation at UFRN), MEC/UFRN (postdoctoral fellowships at IIP). We also thank Rafael Chaves for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askery Canabarro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculating the error influence in the protocol of GHZ state generation

Appendix: Calculating the error influence in the protocol of GHZ state generation

Here we show how to obtain the most general outcome in our protocol of GHZ state generation, as shown in Fig. 1 of the main article. First, one needs to consider all possible paths taken by the photons. At this point, we shall treat each photon independently. For the sake of notation, we divide the interferometer of Fig. 1 into 10 regions (channels), which represents the upper and lower halves of the five circuits. The upper halves of the original circuits of photons 1 to 5 will be labeled as 1, 3, 5, 7, and 9, respectively. On the other hand, the lower halves of these circuits will be labeled as 2, 4, 6, 8, and 10, respectively. For example, the history reflection–reflection–transmission (r,r,t) of photon 1 can be denoted as \((i)^2 R_1|1,1,2\rangle _1\). The parameter \(R_{1}\) represents the reflection amplitude of BS\(_{1}\), and \(i^{2}\) is the phase acquired due to the two reflections.

Note that photons 1 and 5 can have four different histories, whereas photons 2, 3, and 4 can take six different paths before detection. Therefore, the general outcome has \(4^2 6^3=3456\) terms. For example, there is a term

$$\begin{aligned} |1,1,2\rangle _1|3,3,3\rangle _2|6,6,5\rangle _3|8,8,7\rangle _4 |10,10,9\rangle _5, \end{aligned}$$
(16)

with coefficient

$$\begin{aligned} i^2 R_1 i^3 R_2 R_6 R_{10} i T_3 R_8 i T_4 R_9 T_{11} T_5 i, \end{aligned}$$
(17)

representing the path (r,r,t); (r,r,r), (t,r,t); (t,r,t) and (t,r,t) of photons 1 to 5, respectively. Again, we put a factor i whenever a reflection takes place, and \(R_{j}\) (\(T_{j}\)) is the reflection (transmission) amplitude of BS\(_{j}\). This particular path provides single photons in the channels 2, 3, 5, 7, 9. We denote such outcome as (2, 3, 5, 7, 9), which has the information that photon 1 ends up in channel 2, photon 2 in channel 3, etc. If an experiment had this history, detectors \(D_1\) and \(D_3\) would click.

Let us consider the following two histories

$$\begin{aligned} |2,2,1\rangle _1|3,3,3\rangle _2|6,7,8\rangle _3|8,8,10\rangle _4 |10,10,9\rangle _5, \end{aligned}$$
(18)

with coefficient

$$\begin{aligned} -i R_6^2 R_2 R_{10} T_1 T_3 T_8 T_{11} T_4 T_9 T_5, \end{aligned}$$
(19)

and

$$\begin{aligned} |2,3,3\rangle _1|3,2,1\rangle _2|6,7,8\rangle _3|8,8,10\rangle _4 |10,10,9\rangle _5, \end{aligned}$$
(20)

with coefficient

$$\begin{aligned} i T_6^2 R_2 R_{10} T_1 T_3 T_8 T_{11} T_4 T_9 T_5. \end{aligned}$$
(21)

The beam splitters in our proposal have \(R=T=1/\sqrt{2}\). If the photons are indistinguishable, the above two histories are equivalent. Due to the opposite sign in the linear combination, this term does not have any contribution at the end (the HOM effect at BS\(_6\) with the simultaneously arrivals of photons 1 and 2). One can handle the failure of the HOM effect at the second layer by keeping the photons distinguishable, but changing \(R_i^2=T_i^2=\delta \) for \(i=6\dots 9\) in the coefficients, and then setting the remaining factors \(R_i\) and \(T_i\) to \(1/\sqrt{2}\) (50:50 beam splitters and allowed failure of the HOM effect with probability \(\delta \)). When \(\delta =0\), we have the ideal case considered in the main text.

Having the above substitutions been carried out, one can apply detector projections. Here we suppose that the detectors can count the number of incoming photons. To get the GHZ state (\(|\psi \rangle _1\)), for example, one needs exactly one click on the detectors \(D_1\) and \(D_3\) and no click on the other two detectors (postselection). Therefore, from the general linear combination of the outgoing state, one can select only the ones which have exactly one photon in channels 3 and 7 and no photons in channels 4 and 8.

As a matter of fact, we can restore the indistinguishability of the photons by checking the last parts of the history and identifying the indistinguishable outcomes. For example, one identifies (1, 3, 8, 10, 9) with (3, 1, 8, 10, 9). See the HOM failure example above. Then, one has to sum up over all the possible histories generating the same outcome. With \(\delta =0\), the \(D_1D_3\) postselection leads to the following general outcome:

$$\begin{aligned} |\psi (\delta =0)\rangle _{1,gen}= & {} \frac{1}{64} i |1\rangle _1 |1\rangle _2 |5\rangle _4+\frac{1}{64} i |1\rangle _1 |5\rangle _3 |5\rangle _4+\frac{1}{64} |6\rangle _2 |5\rangle _3 |5\rangle _4 \nonumber \\&+\,\frac{i |2\rangle _1 |6\rangle _3 |5\rangle _4}{32 \sqrt{2}}+\frac{1}{64} i |6\rangle _2 |6\rangle _3 |5\rangle _4-\frac{|2\rangle _1 |1\rangle _2 |5\rangle _4}{32 \sqrt{2}} \nonumber \\&+\,\frac{i |1\rangle _1 |5\rangle _3 |9\rangle _5}{32 \sqrt{2}}+\frac{|6\rangle _2 |5\rangle _3 |9\rangle _5}{32 \sqrt{2}}+\frac{|1\rangle _1 |10\rangle _4 |9\rangle _5}{32 \sqrt{2}} \nonumber \\&+\,\frac{1}{64} |1\rangle _1 |1\rangle _2 |10\rangle _5+\frac{i |2\rangle _1 |1\rangle _2 |10\rangle _5}{32 \sqrt{2}}+\frac{|2\rangle _1 |6\rangle _3 |10\rangle _5}{32 \sqrt{2}} \nonumber \\&+\,\frac{1}{64} |6\rangle _2 |6\rangle _3 |10\rangle _5+\frac{1}{64} i |1\rangle _1 |10\rangle _4 |10\rangle _5 \nonumber \\&+\,\frac{1}{64} |6\rangle _2 |10\rangle _4 |10\rangle _5-\frac{i |6\rangle _2 |9\rangle _5 |10\rangle _4}{32 \sqrt{2}}. \end{aligned}$$
(22)

If \(\delta \ne 0\), one has even more terms. One can easily see that there are many outcomes with multiple photons in the same channel.

Let us suppose that one can make an extra postselection step, namely selecting outcomes with single photons in each channel (for example, by using at the end an apparatus which works only with single-photon input states). In this case, the general (\(\delta \ne 0\)) outcome is the following

$$\begin{aligned}&\frac{i \left( 1-2 \sqrt{\delta }\right) ^2 |1\rangle _1 |5\rangle _3 |9\rangle _5}{32 \sqrt{2}}+\frac{\left( 1-2 \sqrt{\delta }\right) ^2 |2\rangle _1 |6\rangle _3 |10\rangle _5}{32 \sqrt{2}} \nonumber \\&+\,\frac{1}{32} \sqrt{\delta } \left( 1-2 \sqrt{\delta }\right) |1\rangle _1 |5\rangle _3 |10\rangle _4+\frac{\sqrt{\delta } \left( 1-2 \sqrt{\delta }\right) |2\rangle _1 |6\rangle _3 |10\rangle _4}{16 \sqrt{2}} \nonumber \\&+\frac{\sqrt{\delta } \left( 1-2 \sqrt{\delta }\right) |2\rangle _1 |6\rangle _2 |10\rangle _5}{16 \sqrt{2}}+\frac{i \delta |1\rangle _2 |5\rangle _4 |9\rangle _5}{8 \sqrt{2}} \nonumber \\&+\,\frac{1}{16} \delta |1\rangle _2 |5\rangle _3 |10\rangle _4+\frac{1}{16} \delta \left( \sqrt{2} |2\rangle _1-i |1\rangle _1\right) |6\rangle _2 |10\rangle _4 \nonumber \\&+\,\frac{1}{16} i \delta |1\rangle _2 |6\rangle _3 |10\rangle _4+\frac{1}{32} \left( 2 \sqrt{\delta }-1\right) \sqrt{\delta } |1\rangle _1 |5\rangle _4 |10\rangle _5 \nonumber \\&-\,\frac{1}{16} \delta |1\rangle _2 |5\rangle _4 |10\rangle _5+\frac{1}{32} i \left( 2 \sqrt{\delta }-1\right) \sqrt{\delta } |1\rangle _1 |6\rangle _2 |10\rangle _5 \nonumber \\&-\,\frac{1}{32} i \left( 2 \sqrt{\delta }-1\right) \sqrt{\delta } |1\rangle _2 |6\rangle _3 |10\rangle _5-\frac{i \left( 2 \sqrt{\delta }-1\right) \sqrt{\delta } |1\rangle _2 |5\rangle _3 |9\rangle _5}{16 \sqrt{2}} \nonumber \\&-\,\frac{i \left( 2 \sqrt{\delta }-1\right) \sqrt{\delta } |1\rangle _1 |5\rangle _4 |9\rangle _5}{16 \sqrt{2}}. \end{aligned}$$
(23)

It is easy to see that the GHZ state is obtained when \(\delta =0\)

$$\begin{aligned} \frac{|2\rangle _1 |6\rangle _3 |10\rangle _5}{32 \sqrt{2}}+\frac{i |1\rangle _1 |5\rangle _3 |9\rangle _5}{32 \sqrt{2}} \end{aligned}$$
(24)

or restoring the notation of Sect. 2 in the main text

$$\begin{aligned} \frac{|B\rangle _1 |B\rangle _3 |B\rangle _5}{32 \sqrt{2}}+\frac{i |A\rangle _1 |A\rangle _3 |A\rangle _5}{32 \sqrt{2}}. \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima Bernardo, B., Lencses, M., Brito, S. et al. Greenberger–Horne–Zeilinger state generation with linear optical elements. Quantum Inf Process 18, 331 (2019). https://doi.org/10.1007/s11128-019-2442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2442-z

Keywords

Navigation