Skip to main content
Log in

Robustness measure of hybrid intra-particle entanglement, discord, and classical correlation with initial Werner state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum information processing is largely dependent on the robustness of non-classical correlations, such as entanglement and quantum discord. However, all the realistic quantum systems are thermodynamically open and lose their coherence with time through environmental interaction. The time evolution of quantum entanglement, discord, and the respective classical correlation for a single, spin-1/2 particle under spin and energy degrees of freedom, with an initial Werner state, has been investigated in the present study. The present intra-particle system is considered to be easier to produce than its inter-particle counterpart. Experimentally, this type of system may be realized in the well-known Penning trap. The most stable correlation was identified through maximization of a system-specific global objective function. Quantum discord was found to be the most stable, followed by the classical correlation. Moreover, all the correlations were observed to attain highest robustness under initial Bell state, with minimum possible dephasing and decoherence parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  3. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings in 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)

  5. Bennet C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings in IEEE International Conference on Computers, Syste, and Signal Processing Bangalore, India, pp. 175–179 (1984)

  6. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  9. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Celeri, L.C., Maziero, J., Serra, R.M.: Theoretical and experimental aspects of quantum discord and related measures. Int. J. Quantum Inf. 09, 1837 (2011)

    Article  MathSciNet  Google Scholar 

  11. Ali, M.: Quantum dissonance provide power to deterministic quantum computation with single qubit. arXiv:1312.1572 (2013)

  12. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  13. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  14. Walborn, S.P.: Hyperentanglement: breaking the communication barrier. Nat. Phys. 4, 268–269 (2008)

    Article  Google Scholar 

  15. Vallone, G., Pomarico, E., Mataloni, P., Martini, F.D., Berardi, V.: Realization and characterization of a two-photon four-qubit linear cluster state. Phys. Rev. Lett. 98, 180502 (2007)

    Article  ADS  Google Scholar 

  16. Wang, C., Cao, C., He, L., Zhang, C.: Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quantum Inf. Process. 13(4), 1025–1034 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Waks, E., Monroe, C.: Protocol for hybrid entanglement between a trapped atom and a quantum dot. Phys. Rev. A 80, 062330 (2009)

    Article  ADS  Google Scholar 

  18. Neves, L., Lima, G., Delgado, A., Saavedra, C.: Hybrid photonic entanglement: realization, characterization, and applications. Phys. Rev. A 80, 042322 (2009)

    Article  ADS  Google Scholar 

  19. Wei-Bo, Gao, et al.: Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states. Phys. Rev. Lett. 104(2), 020501 (2010)

    Article  Google Scholar 

  20. O’Sullivan-Hale, M.N., Khan, I.A., Boyd, R.W., Howell, J.C.: Pixel entanglement: experimental realization of optically entangled d \(=\) 3 and d \(=\) 6 qudits. Phys. Rev. Lett. 94, 220501 (2005)

    Article  Google Scholar 

  21. Ali-Khan, I., Broadbent, C.J., Howell, J.C.: Large-alphabet quantum key distribution using energy-time entangled bipartite states. Phys. Rev. Lett. 98, 060503 (2007)

    Article  ADS  Google Scholar 

  22. Blasone, M., DellAnno, F., Siena, S.D., Illuminati, F.: Entanglement in neutrino oscillations. Europhys. Lett. 85, 50002 (2009)

    Article  ADS  Google Scholar 

  23. Huang, P., Zhu, J., Qi, X., He, G., Zeng, G.: Different dynamics of classical and quantum correlations under decoherence. Quantum Inf. Process. 11, 1845–1865 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wood, C.J., et al.: Quantum correlations in a noisy neutron interferometer. Phys. Rev. A 90(3), 032315 (2014)

    Article  ADS  Google Scholar 

  25. Hasegawa, Y.: Entanglement between degrees of freedom in a single-particle system revealed in neutron interferometry. Found. Phys. 42(1), 29–45 (2010)

    Article  ADS  Google Scholar 

  26. Hasegawa, Y., Loidl, R., Badurek, G., Durstberger-Rennhofer, K., Sponar, S., Rauch, H.: Engineering of triply entangled states in a single-neutron system. Phys. Rev. A 81(3), 032121 (2010)

    Article  ADS  Google Scholar 

  27. Rodriguez-Rosario, C.A., Modi, K., Kuah, A., Shaji, A., Sudarshan, E.C.G.: Completely positive maps and classical correlations. J. Phys. A 41, 205301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Brodutch, A., Datta, A., Modi, K., Rivas, A., Rodriguez-Rosario, C.A.: Vanishing quantum discord is not necessary for completely positive maps. Phys. Rev. A 87(4), 042301 (2013)

    Article  ADS  Google Scholar 

  29. Fuwa M., Takeda S., Zwierz M., Wiseman H.M., Furusawa A.: Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements. Nat. Commun. 6 (2015) (Article number: 6665)

  30. Hardesty L.: Toward practical quantum computers: technique extends duration of fragile quantum states. Phys.org (2015)

  31. Du, C., Wang, H., Yang, F., Hammel, P.C.: Systematic variation of spin-orbit coupling with d-orbital filling: large inverse spin Hall effect in 3d transition metals. Phys. Rev. B 90(14), 140407 (2014)

    Article  ADS  Google Scholar 

  32. Ricks, A.M., Brathwaite, A.D., Duncan, M.A.: Coordination and spin states in vanadium carbonyl complexes (V(CO)n+, n = 1–7) revealed with IR spectroscopy. J Phys. Chem. A 117(6), 1001–1010 (2013)

    Article  Google Scholar 

  33. Willis, C.R., Bergmann, P.G.: Quantum mechanical Liouville equation for a system in contact with a reservoir. Phys. Rev. 128(1), 391 (1962)

    Article  ADS  MATH  Google Scholar 

  34. Linbald, G.: On the generators of quantum dynamical semigroups. Commun. Math Phys. 48(2), 119–130 (1976)

    Article  ADS  Google Scholar 

  35. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  36. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  37. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  39. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  Google Scholar 

  40. Li, X.F., Fang, M.F., Wang, C.Z., Hou, L.Z.: Dissipative dynamics of quantum and classical correlations for two-qubit under two-side and one-side decoherence. J. At. Mol. Sci. 3(2), 177–186 (2012)

    ADS  Google Scholar 

  41. Yoo, H.I., Eberly, J.H.: Dynamical theory of an atom with two or three levels interacting with quantized cavity fields. Phys. Rep. 118, 239–337 (1985)

    Article  ADS  Google Scholar 

  42. Eberly, J.H., Narzohny, N.B., Sanchez-Mondragon, J.J.: Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44(20), 1323 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  43. Gea-Banacloche, J.: Collapse and revival of the state vector in the Jaynes–Cummings model: an example of state preparation by a quantum apparatus. Phys. Rev. Lett. 65(27), 3385 (1990)

    Article  ADS  Google Scholar 

  44. Berrada, K., Eleuch, H., Hassouni, Y.: Asymptotic dynamics of quantum discord in open quantum systems. J. Phys. B At. Mol. Opt. Phys. 44, 145503 (2011)

    Article  ADS  Google Scholar 

  45. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2004)

    Google Scholar 

  46. Fanchini, F.F., Castelano, L.K., Caldeira, A.O.: Entanglement versus quantum discord in two coupled double quantum dots. New J. Phys. 12, 073009 (2010)

    Article  ADS  Google Scholar 

  47. Brown, L.S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58(1), 233 (1986)

    Article  ADS  Google Scholar 

  48. Pedersen, L.H., Rangan, C.: Controllability and universal three-qubit quantum computation with trapped electron states. Quantum Inf. Process. 7(1), 33–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lamata, L., Porras, D., Cirac, J.I.: Towards electron-electron entanglement in Penning traps. Phys. Rev. A 81, 022301 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project work has been funded by University Grants Commission (UGC), India, under Grant No. F. PSW-108/12-13 (ERO). The contribution of UGC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Saha.

Appendix: The quantum Liouville equation and its solution for a single spin-1/2 particle

Appendix: The quantum Liouville equation and its solution for a single spin-1/2 particle

$$\begin{aligned}&\mathop {\rho _{11} }\limits ^{\bullet } +\gamma \rho _{11} =0\nonumber \\&\quad \mathop {\rho _{12} }\limits ^{\bullet } +\left( {i\alpha \omega _0 +\gamma +\frac{\varGamma }{2}} \right) \rho _{12} =0\nonumber \\&\quad \mathop {\rho _{13} }\limits ^{\bullet } +\left( {i\omega _0 +\frac{\gamma }{2}} \right) \rho _{13} =0\nonumber \\&\quad \mathop {\rho _{14} }\limits ^{\bullet } +\left( {\left( {1+\alpha } \right) i\omega _0 +\frac{\gamma }{2}+\frac{\varGamma }{2}} \right) \rho _{14} =0\nonumber \\&\quad \mathop {\rho _{22} }\limits ^{\bullet } +\gamma \rho _{22} =0\nonumber \\&\quad \mathop {\rho _{23} }\limits ^{\bullet } +\left( {\left( {1-\alpha } \right) i\omega _0 +\frac{\gamma }{2}+\frac{\varGamma }{2}} \right) \rho _{23} =0\nonumber \\&\quad \mathop {\rho _{24} }\limits ^{\bullet } +\left( {i\omega _0 +\frac{\gamma }{2}} \right) \rho _{24} =0\nonumber \\&\quad \mathop {\rho _{33} }\limits ^{\bullet } -\gamma \rho _{11} =0\nonumber \\&\quad \mathop {\rho _{34} }\limits ^{\bullet } +\left( {i\alpha \omega _0 +\frac{\varGamma }{2}} \right) \rho _{34} -\gamma \rho _{12} =0\nonumber \\&\quad \mathop {\rho _{44} }\limits ^{\bullet } -\gamma \rho _{22} =0 \end{aligned}$$
(26)

Equation (26) was analytically solved in congruence with Eq. (2) as

$$\begin{aligned} \rho _{11} \left( t \right)= & {} \rho _{11} \left( 0 \right) e^{-\gamma t}\nonumber \\ \rho _{12} \left( t \right)= & {} \rho _{12} \left( 0 \right) e^{-\left( {\gamma +\frac{\varGamma }{2}+i\alpha \omega _0 } \right) t} \cdot \nonumber \\ \rho _{13} \left( t \right)= & {} \rho _{13} \left( 0 \right) e^{-\left( {\frac{\gamma }{2}+i\omega _0 } \right) t}\nonumber \\ \rho _{14} \left( t \right)= & {} \rho _{14} \left( 0 \right) e^{-\left( {\frac{\gamma }{2}+\frac{\varGamma }{2}+\left( {1+\alpha } \right) i\omega _0 } \right) t}\nonumber \\ \rho _{22} \left( t \right)= & {} \rho _{22} \left( 0 \right) e^{-\gamma t}\nonumber \\ \rho _{23} \left( t \right)= & {} \rho _{23} \left( 0 \right) e^{-\left( {\frac{\gamma }{2}+\frac{\varGamma }{2}+\left( {1-\alpha } \right) i\omega _0 } \right) t}\nonumber \\ \rho _{24} \left( t \right)= & {} \rho _{24} \left( 0 \right) e^{-\left( {\frac{\gamma }{2}+i\omega _0 } \right) t}\nonumber \\ \rho _{33} \left( t \right)= & {} \rho _{33} \left( 0 \right) +\left( {-e^{-\gamma t}+1} \right) \rho _{11} \left( 0 \right) \nonumber \\ \rho _{34} \left( t \right)= & {} \rho _{34} \left( 0 \right) e^{-\left( {\frac{\varGamma }{2}+i\alpha \omega _0 } \right) t}+\rho _{12} \left( 0 \right) e^{-\left( {\frac{\varGamma }{2}+i\alpha \omega _0 } \right) t}\left( {1-e^{-\gamma t}} \right) \nonumber \\ \rho _{44} \left( t \right)= & {} \rho _{44} \left( 0 \right) +\left( {-e^{-\gamma t}+1} \right) \rho _{22} \left( 0 \right) \end{aligned}$$
(27)

The lower triangular elements of the density operator can be obtained from Hermitian property\(\left( {\rho _{ij} ^{*}=\rho _{ji} } \right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, P., Sarkar, D. Robustness measure of hybrid intra-particle entanglement, discord, and classical correlation with initial Werner state. Quantum Inf Process 15, 791–807 (2016). https://doi.org/10.1007/s11128-015-1210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1210-y

Keywords

Navigation