Skip to main content
Log in

Global Malmquist and cost Malmquist indexes for group comparison

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

The Malmquist index (MI) has demonstrated its usefulness in comparing the performances of Decision Making Units (DMUs) performances. The global MI (GMI) has been suggested as a means to overcome three drawbacks of the MI: non-circularity, disparate measurements, and infeasibility. Recently, it has appeared that the MI can also be used to compare groups of DMUs. While this new function of the index has also increased its usefulness, it presents the same drawbacks as the MI. In this paper, we define the global counterpart of the MI for group contexts. We also consider the case where DMUs have an economic optimization behavior by proposing a global cost MI (GCMI). The GCMI requires the observation of the input prices. As it may represent a strong assumption, we propose solutions. These two novel indexes equip the practitioners with a new toolkit. We illustrate the usefulness of our new indexes with the Chinese energy sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We notice that some authors, such as O’Donnell (2012) and Peyrache (2014), have questioned the purpose of the MI; namely whether it really measures productivity performance change and under what conditions. This debate is beyond the scope of this paper.

  2. See, for example, for extensions: Chen (2003), Chen and Ali (2003), Zelenyuk (2006), Yu (2007), Kao (2010), Portela and Thanassoulis (2010), Wang and Lan (2011), Kao and Hwang (2014), Mayer and Zelenyuk (2014), Fuentes and Lillo-Banuls (2016), Asmild et al. (2017), Kao (2017), and Kevork et al. (2017).

  3. DEA, after Charnes et al. (1978), is an approach to productive efficiency measurement. DEA is intrinsically nonparametric, which means that it does not require a parametric/functional specification of the production technology. Typically, a DMU’s efficiency can be computed by simple linear programs. Refer to Cooper et al. (2004), Cooper et al. (2007), Fried et al. (2008), and Cook and Seiford (2009) for reviews. See Section 3.5 for the DEA-based linear programs in the group context.

  4. See, for example, for extensions: Yang and Huang (2009), Huang and Juo (2015), Walheer (2018b), and Zhu et al. (2017).

  5. The technique has been extended in two directions; Aparicio et al. (2017) for unbalanced panels, and Walheer (2018a) for multi-output DMUs.

  6. This Section has been added on the request of an anonymous referee. We thank the referee for challenging us.

  7. Note that the problem become even more complex when the numbers of DMUs change over time. This is why most of the empirical works using the MI use a balanced panel dataset.

  8. See, for example, for extensions and applications: Oh (2010), Oh and Lee (2010), Pastor et al. (2011), Wang et al. (2012), Afsharian and Ahn (2015), and Oh and Lee (2017). The GMI is named global since it is based on a global technology; in our context, it is the technology that envelops all group-specific technology sets (see (12)).

  9. See, for example, for extensions, Tohidi and Razavyan (2013), Huang and Juo (2015), and Cho and Wang (2017).

  10. See, for example, Walheer (2018c) for more discussion on how to model energy firms.

  11. Note that if we do not use any bounds for the prices, we obtain the same results for GCMI and GMI. That is, in this case, GMI is interpreted as a shadow GCMI. It implies also that GAMI = 1 for all groups when relying on the best input prices (see Section 3.6 for more details).

References

  • Afsharian M, Ahn H (2015) The overall Malmquist index: a new approach for measuring productivity changes over time. Ann Oper Res 226:1–27

    Article  Google Scholar 

  • Althin R (2001) Measurement of productivity changes: two Malmquist index approachest. J Product Anal 16:107–128

    Article  Google Scholar 

  • Aparicio J, Crespo-Cebada E, Pedraja-Chaparro F, Santinc D (2017) Comparing school ownership performance using a pseudo-panel database: a Malmquist-type index approach. Eur J Oper Res 256:533–542

    Article  Google Scholar 

  • Asmild M, Hougaard JL, Balezentis T (2017) Multi-directional productivity change: MEA-Malmquist. J Product Anal 46:109–119

    Article  Google Scholar 

  • Berg SA, Førsund FR, Jansen ES (1992) Malmquist indexes of productivity growth during the deregulation of Norwegian banking 1980-1989. Scand J Econ 94:211–228

    Article  Google Scholar 

  • Bogetoft P (1996) DEA on relaxed convexity assumptions. Manag Sci 42:457–465

    Article  Google Scholar 

  • Brandt L, Van Biesebroeck J, Zhang Y (2012) Creative accounting or creative destruction? Firm-level productivity growth inChinese manufacturing J Dev Econ 97:339–351

    Article  Google Scholar 

  • Brandt L, Van Biesebroeck J, Zhang Y (2014) Challenges of working with the Chinese NBS firm-level data hina Econ Rev 30:339–352

    Google Scholar 

  • Camanho AS, Dyson RG (2006) Data envelopment analysis and Malmquist indices for measuring group performance. J Product Anal 26:35–49

    Article  Google Scholar 

  • Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output and productivity. Econometrica 50:1393–1414

    Article  Google Scholar 

  • Chambers RG, Färe R (1994) Hicks-neutrality and trade biased growth: a taxonomy. J Econ Theory 64:554–567

    Article  Google Scholar 

  • Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Nav Res Logist Q 2:429–444

    Google Scholar 

  • Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444

    Article  Google Scholar 

  • Charnes A, Cooper WW, Wei QL, Huang ZM (1989) Cone ratio data envelopment analysis and multi-objective programming. Int J Syst Sci 20:1099–1118

    Article  Google Scholar 

  • Chen Y (2003) A non-radial Malmquist productivity index with an illustrative application to Chinese major industries. Int J Product Econ 83:27–35

    Article  Google Scholar 

  • Chen Y, Ali AI (2003) DEA Malmquist productivity measure: new insights with an application to computer industry Eur J OperRes 159:239–249

    Article  Google Scholar 

  • Cherchye L, De Rock B, Dierynck B, Roodhooft F, Sabbe J (2013) Opening the black box of efficiency measurement: input allocation in multi-output settings. Oper Res 61:1148–1165

    Article  Google Scholar 

  • Cherchye L, De Rock B, Walheer B (2015) Multi-output efficiency with good and bad outputs. Eur J Oper Res 240:872–881

    Article  Google Scholar 

  • Cherchye L, De Rock B, Walheer B (2016) Multi-output profit efficiency and directional distance functions. Omega 61:100–109

    Article  Google Scholar 

  • Cherchye L, Moesen W, Rogge N, Van, Puyenbroeck T (2007) An introduction to benefit of the doubt composite indicators. Soc Indic Res 82:111–145

    Article  Google Scholar 

  • Cho T-Y, Wang T-Y (2017) Estimations of cost metafrontier Malmquist productivity index: using international tourism hotels in Taiwan as an example. Empir Econ 31:1–34

    Google Scholar 

  • Cook WD, Seiford LM (2009) Data Envelopment Analysis (DEA) - thirty years on. Eur J Oper Res 192:1–17

    Article  Google Scholar 

  • Cooper WW, Seiford LM, Zhu J (2004) Handbook on data envelopment analysis, second edition, Springer

  • Cooper WW, Seiford LM, Tone K (2007) Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software, second edition, Springer

  • Daraio C, Simar L (2007) Robust and nonparametric methods in efficiency analysis. methodology and applications, Springer

  • Debreu G (1951) The coefficient of resource utilization. Econometrica 19(3):273–292

    Article  Google Scholar 

  • Deprins D, Simar L, Tulkens H (1984) Measuring labor efficiency in post offices. In: Marchand M, Pestieau Tulkens H (eds) The Performance of Public Enterprises Concepts and Measurements. Elsevier, Amsterdam, p 247–263

    Google Scholar 

  • Despotis DK, Sotiros D, Koronakos G (2016) A network DEA approach for series multi-stage processes. Omega 61:35–48

    Article  Google Scholar 

  • Diewert WE, Fox KJ (2017) Decomposing productivity indexes into explanatory factors. Eur J Oper Res 256(1):275–291

    Article  Google Scholar 

  • Emrouznejad A, Yang G-L (2016a) CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist-Luenberger productivity index. Energy Policy 96:39–410

    Article  Google Scholar 

  • Emrouznejad A, Yang G-L (2016b) A framework for measuring global Malmquist-Luenberger productivity index with CO2 emissions on Chinese manufacturing industries. Energy 115:840–856

    Article  Google Scholar 

  • Fang L, Li H (2015) Cost efficiency in data envelopment analysis under the law of one price. Eur J Oper Res 240:488–492

    Article  Google Scholar 

  • Fang M, Shao S, Yang L (2015) Combining global Malmquist-Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: a case of Shanghai(China). Energy Policy 79:189–201

    Article  Google Scholar 

  • Färe R, Grosskopf S (1996) Intertemporal production frontiers: with dynamic DEA. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Färe R, Grosskopf S, Norris M, Zhang Z (1994) Productivity growth, technical progress, and efficiency change in industrialized countries. Am Econ Rev 84(1):66–83

    Google Scholar 

  • Färe R, Karagiannis G (2017) The denominator rule for share-weighting aggregation. Eur J Oper Res 260:1175–1180

    Article  Google Scholar 

  • Färe R, Zelenyuk (2003) Aggregation of cost efficiency: indicators and indexes across firms. Eur J Oper Res 146:615–620

    Article  Google Scholar 

  • Färe R, Zelenyuk (2007) Extending Färe and Zelenyuk (2003). Eur J Oper Res 179:594–595

    Article  Google Scholar 

  • Farrell M (1957) The measurement of productive efficiency. J R Stat Soc Ser 1, General 120(Part 3):253–281

    Article  Google Scholar 

  • Fried H, Lovell CAK, Schmidt S (2008) The measurement of productive efficiency and productivity change. Oxford University Press

  • Frisch R (1936) Annual survey of general economic theory: the problem of index numbers. Econometrica 4:1–38

    Article  Google Scholar 

  • Fuentes R, Lillo-Banuls A (2016) Smoothed bootstrap Malmquist index based on DEA model to compute productivity of tax offices. Expert Syst Appl 42:2442–2450

    Article  Google Scholar 

  • Huang C-W, Ting C-T, Lin C-H, Lin C-T (2013) Measuring non-convex metafrontier efficiency in international tourist hotels. J Oper Res Soc 64:250–259

    Article  Google Scholar 

  • Huang M-Y, Juo J-C (2015) Metafrontier cost Malmquist productivity index: an application to Taiwanese and Chinese commercial banks. J Product Anal 44:321–335

    Article  Google Scholar 

  • Kao C (2010) Malmquist productivity index based on common-weights DEA: the case of Taiwan forests after reorganization. Omega 38:484–491

    Article  Google Scholar 

  • Kao, H. Y., & Chan, C. Y. (2013). A discriminative multi-objective programming method for solving network DEA. In Advances in Intelligent Systems and Applications-Volume 1 (pp. 327–335). Springer, Berlin, Heidelberg

  • Kao C (2017) Measurement and decomposition of the Malmquist productivity index for parallel production systems. Omega 64:54–59

    Article  Google Scholar 

  • Kao C, Hwang S-N (2014) Multi-period efficiency and Malmquist productivity index in two-stage production systems. Eur J Oper Res 232:512–521

    Article  Google Scholar 

  • Kao H-Y, Chan C-Y, Wu D-J (2014) A multi-objective programming method for solving network DEA. Appl Soft Comput 24:406–413

    Article  Google Scholar 

  • Kerstens K, Vanden, Eeckaut P (1999) “Estimating returns to scale using non-parametric deterministic technologies: a new method based on goodness-of-fit”. Eur J Oper Res 113(1):206–214

    Article  Google Scholar 

  • Kevork LS, Pange J, Tzeremes P, Tzeremes NG (2017) Estimating Malmquist productivity indexes using probabilistic directional distances: an application to the European banking sector. Eur J Oper Res 261:1125–1140

    Article  Google Scholar 

  • Kuosmanen T, Cherchye L, Sipilainen T (2006) The law of one price in data envelopment analysis: restricting weight flexibility across firms. Eur J Oper Res 170:735–757

    Article  Google Scholar 

  • Leleu H (2009) Mixing DEA and FDH models together. J Oper Res Soc 60(12):1730–1749.

    Article  Google Scholar 

  • Li SK, Ng YC (1995) Measuring the productive efficiency of a group of firms. Int Adv Econ Res 1(4):377–390

    Article  Google Scholar 

  • Malmquist S (1953) Index numbers and indifference surfaces. Trabajos de Estatistica 4:209–242

    Article  Google Scholar 

  • Maniadakis N, Thanassoulis E (2004) A cost Malmquist productivity index. Eur J Oper Res 154:396–409

    Article  Google Scholar 

  • Mayer A, Zelenyuk V (2014) Aggregation of Malmquist productivity indexes allowing for reallocation of resources. Eur J Oper Res 238:774–785

    Article  Google Scholar 

  • O’Donnell CJ (2012) An aggregate quantity framework for measuring and decomposing productivity change. J Prod Anal 38:255–272

    Article  Google Scholar 

  • Oh DH (2010) A global Malmquist-Luenberger productivity index. J Prod Anal 34:183–197

    Article  Google Scholar 

  • Oh DH, Lee J-D (2010) A metafrontier approach for measuring Malmquist productivity index. Empir Econ 38:47–64

    Article  Google Scholar 

  • Oh DH, Lee J-D (2017) A sequential global Malmquist productivity index: productivity growth index for unbalanced panel data considering the progressive nature of technology. Empir Econ 52:1651–1674

    Article  Google Scholar 

  • Pastor JT, Asmild M, Lovell CAK (2011) The biennial Malmquist productivity change index. Socio-Econ Plan Sci 45:10–15

    Article  Google Scholar 

  • Pastor JT, Lovell CAK (2005) A global Malmquist productivity index. Econ Lett 88:266–271

    Article  Google Scholar 

  • Pastor JT, Lovell CAK (2007) Circularity of the Malmquist productivity index. Econ Theory 33:591–599

    Article  Google Scholar 

  • Peyrache A (2014) Hicks-Moorsteen versus Malmquist: a connection by means of a radial productivity index. J Product Anal 41(3):435–442

    Article  Google Scholar 

  • Petersen NC (1990) Data envelopment analysis on a relaxed set of assumptions. Manag Sci 36:305–314

    Article  Google Scholar 

  • Podinovski VV (2004a) On the linearization of reference technologies for testing returns to scale in FDH models. Eur J Oper Res 152(3):800–802

    Article  Google Scholar 

  • Podinovski VV (2004b) Local and global returns to scale in performance measurement. J Oper Res Soc 55(2):170–178

    Article  Google Scholar 

  • Portela MCAS, Thanassoulis E (2010) Malmquist indices for measuring productivity in the presence of negative data: an application to bank branches. J Banking Finance 34:1472–1483

    Article  Google Scholar 

  • Ray S, Delsi E (1997) Productivity growth, technical progress and efficiency change in industrialized countries: Comment. Am Econ Rev 87:1033–1039

    Google Scholar 

  • Shepard RW (1953) Cost and production functions. Princeton University Press

  • Shepard RW (1970) Theory of cost and production functions. Princeton University Press

  • Shestalova V (2003) Sequential Malmquist indices of productivity growth: an application to OECD industrial activities. J Product Anal 19:211–226

    Article  Google Scholar 

  • Sickles RC, Zelenyuk V (2019) Measurement of productivity and efficiency. Cambridge University Press

  • Thanassoulis E, Shiraz RK, Maniadakis N (2015) A cost Malmquist productivity index capturing group performance. Eur J Oper Res 241:796–805

    Article  Google Scholar 

  • Tohidi G, Razavyan S (2013) A circular global profit Malmquist productivity index in data envelopment analysis. Appl Math Model 37:216–227

    Article  Google Scholar 

  • Tohidi G, Razavyan S, Tohidnia S (2012) A global cost Malmquist productivity index using data envelopment analysis. J Oper Res Soc 63:72–78

    Article  Google Scholar 

  • Tulkens H (1993) On FDH analysis: some methodological issues and applications to retail banking, courts and urban transit. J Product Anal 4:183–210

    Article  Google Scholar 

  • Varian HR (1984) The non-parametric approach to production analysis. Econometrica 52:579–598

    Article  Google Scholar 

  • Walheer B (2016a) A multi-sector nonparametric production-frontier analysis of the economic growth and the convergence of the European countries. Pac Econ Rev 21(4):498–524

    Article  Google Scholar 

  • Walheer B (2016b) Growth and convergence of the OECD countries: a multi-sector production-frontier approach. Eur J Oper Res 252:665–675

    Article  Google Scholar 

  • Walheer B (2018a) Cost Malmquist productivity index: an output-specific approach for group comparison. J Product Anal 49:79–94

    Article  Google Scholar 

  • Walheer B (2018b) Disaggregation of the Cost Malmquist Productivity Index with joint and output-specific inputs. Omega 75:1–12

    Article  Google Scholar 

  • Walheer B (2018c) Labour productivity growth and energy in Europe: A production-frontier approach. Energy 152:129–143

    Article  Google Scholar 

  • Walheer B (2018d) Scale efficiency for multi-output cost minimizing producers: the case of the US electricity plants. Energy Econ 70:26–36

    Article  Google Scholar 

  • Wang Y-M, Lan Y-X (2011) Measuring Malmquist productivity index: a new approach based on double frontiers data envelopment analysis. Math Comput Model 54:2760–2771

    Article  Google Scholar 

  • Wang C, Lee J, Chang Y (2012) Measuring productivity in the biotechnology industry using the global Malmquist index. Appl Econ Lett 19:807–812

    Article  Google Scholar 

  • Xue M, Harker PT (2002) Note: ranking DMUs with infeasible super-efficiency DEA models. Manage Sci 48:705–710

    Article  Google Scholar 

  • Yang YL, Huang CJ (2009) Estimating the Malmquist productivity index in the Taiwanese banking industry: a production and cost approach. Taiwan Econ Rev 37:353–378

    Google Scholar 

  • Ylvinger S (2000) Industry performance and structural efficiency measures: Solutions to problems in firm models. Eur J Oper Res 121:164–174

    Article  Google Scholar 

  • Yu MM (2007) The capacity productivity change and the variable input productivity change: a new decomposition of the Malmquist productivity index. Appl Math Comput 185:375–381

    Google Scholar 

  • Zelenyuk V (2006) Aggregation of Malmquist productivity indexes. Eur J Oper Res 174:1076–1086

    Article  Google Scholar 

  • Zelenyuk V (2016) Aggregation of scale efficiency. Eur J Oper Res 240:269–277

    Article  Google Scholar 

  • Zhang C, Liu H, Bressers HTA, Buchanan KS (2011) Productivity growth and environmental regulations-accounting for undesirable outputs: analysis of China’s thirty provincial regions using the Malmquist-Luenberger index. Ecol Econ 70:2369–2379

    Article  Google Scholar 

  • Zhang N, Choi Y (2013) Total-factor carbon emission performance of fossil fuel power plants in China: a meta frontier non-radial Malmquist index analysis. Comput Econ 46(3):375–388

    Google Scholar 

  • Zhang N, Zhou P, Kung C-C (2015) Total-factor carbon emission performance of the Chinese transportation industry: a bootstrapped non-radial Malmquist index analysis. Renew Sustain Energy Rev 41:584–593

    Article  Google Scholar 

  • Zhu N, Liu Y, Huang Q, Emrouznejad A (2017) An allocation Malmquist index with an application in the China securities industry. Oper Res 17:669–691

    Google Scholar 

  • Zimmermann HJ (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45–55

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Editor Victor Podinovski and the two anonymous referees for their valuable comments that substantially improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barnabé Walheer.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Table 10

Table 10 Output and inputs: descriptive statistics

Appendix B

Proof of Eq. (19):

$$\frac{{GMI}}{{MI}} = \left[ {\frac{{GMI}}{{MI^A}}\frac{{GMI}}{{MI^B}}} \right]^{1/2},$$
$$\left[ {\frac{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}} \right)^{ - 1}}}{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{A,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1}}}\frac{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}} \right)^{ - 1}}}{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{B,A}} \right]^{1/n_A}}}} \right)^{ - 1}}}} \right]^{1/2},$$
$$= \left[ {\frac{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{A,B}} \right]^{1/n_B}}}} \right)^{ - 1}}}{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1}}}\frac{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}} \right)^{ - 1}}}{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{B,A}} \right]^{1/n_A}}}} \right)^{ - 1}}}} \right]^{1/2},$$
$$= \left[ {\frac{{BPG^{A,B}}}{{BPG^{A,A}}} \times \frac{{BPG^{B,B}}}{{BPG^{B,A}}}} \right]^{1/2}.$$

Proof of Eq. (20):

$$\frac{{GCMI}}{{CMI}} = \left[ {\frac{{GCMI}}{{CMI^A}}\frac{{GCMI}}{{CMI^B}}} \right]^{1/2},$$
$$= \left[ {\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{A,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}}}}\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{B,A}} \right]^{1/n_A}}}}}} \right]^{1/2},$$
$$= \left[ {\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{A,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}}}}\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{B,A}} \right]^{1/n_A}}}}}} \right]^{1/2},$$
$$= \left[ {\frac{{BPCG^{A,B}}}{{BPCG^{A,A}}} \times \frac{{BPCG^{B,B}}}{{BPCG^{B,A}}}} \right]^{1/2}.$$

Proof of Eq. (21):

$$GMI = \left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}} \right)^{ - 1},$$
$$= \left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}\, \times \,\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}\, \times \,\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}} \right)^{ - 1},$$
$$= \left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1}\, \times \,\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}\, \times \,\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}} \right)^{ - 1},$$
$$= \left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1} \times \,\frac{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}} \right)^{ - 1}}}{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1}}},$$
$$= \left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1} \times \,\frac{{BPG^{B,B}}}{{BPG^{A,A}}},$$
$$= TED \times BPD.$$

Proof of Eq. (22):

$$GCMI = \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}} \times \frac{{BPCG^{B,B}}}{{BPCG^{A,A}}},$$
$$= CED \times BPCD.$$

Proof of Eq. (23):

$$CED = \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}},$$
$$= \left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}},$$
$$= TED \times AED.$$

Proof of Eq. (24):

$$BPCD = \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}}}},$$
$$= \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A}} \right]^{1/n_A}}}}} \times \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}}} \times \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}}},$$
$$= \frac{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,D_t^{B,B}} \right]^{1/n_B}}}} \right)^{ - 1}}}{{\left( {\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,D_t^{A,A}} \right]^{1/n_A}}}} \right)^{ - 1}}} \times \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}}}},$$
$$= \frac{{BPG^{B,B}}}{{BPG^{A,B}}} \times \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}}}},$$
$$= BPD \times BPAD.$$

Proof of Eq. (29):

$$GAMI = \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}} \times \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}} \times \frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}}}},$$
$$= \frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}} \times \frac{{BPAG^{B,B}}}{{BPAG^{A,A}}},$$
$$= AED \times BPAD.$$

Proof of Eq. (30):

$$\frac{{GAMI}}{{AMI}} = \left[ {\frac{{GAMI}}{{AMI^A}}\frac{{GAMI}}{{AMI^B}}} \right]^{1/2},$$
$$= \left[ {\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{A,B} \times D_t^{A,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}}}}\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{B,A} \times D_t^{B,A}} \right]^{1/n_A}}}}}} \right]^{1/2},$$
$$= \left[ {\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{A,B} \times D_t^{A,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{A,A} \times D_t^{A,A}} \right]^{1/n_A}}}}}\frac{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,GCE_t \times GD_t} \right]^{1/n_B}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_B} \,CE_t^{B,B} \times D_t^{B,B}} \right]^{1/n_B}}}}}{{\frac{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,GCE_t \times GD_t} \right]^{1/n_A}}}{{\left[ {\mathop {\prod }\nolimits_{t = 1}^{n_A} \,CE_t^{B,A} \times D_t^{B,A}} \right]^{1/n_A}}}}}} \right]^{1/2},$$
$$= \left[ {\frac{{BPAG^{A,B}}}{{BPAG^{A,A}}} \times \frac{{BPAG^{B,B}}}{{BPAG^{B,A}}}} \right]^{1/2}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walheer, B. Global Malmquist and cost Malmquist indexes for group comparison. J Prod Anal 58, 75–93 (2022). https://doi.org/10.1007/s11123-022-00640-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-022-00640-5

Keywords

Navigation