Skip to main content
Log in

Goodness--of--fit tests for stochastic frontier models based on the characteristic function

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

We consider goodness–of–fit tests for the distribution of the composed error in Stochastic Frontier Models. The proposed test statistic utilizes the characteristic function of the composed error term, and is formulated as a weighted integral of properly standardized data. The new test statistic is shown to be consistent and computationally convenient. Simulation results are presented whereby resampling versions of the new tests are compared to classical goodness–of–fit methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The test for the cost frontier model with ε = v + u may be computed by modifying Eq. (6) to Dn(t) ≔ Sn(t) − tCn(t) and by analogously defining the test statistic in Eq. (8).

  2. For simulations we used Matlab software R2015a version.

References

  • Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier models production function models. J Econometr 6:21–37

    Article  Google Scholar 

  • Amsler C, Papadopoulos A, Schmidt P (2021) Evaluating the cdf of the skew normal distribution. Empiric Econom 60:3171–3202

    Article  Google Scholar 

  • Amsler C, Schmidt P, Tsay WJ (2019) Evaluating the CDF of the distribution of the stochastic frontier composed error. J Product Anal 52:29–35

    Article  Google Scholar 

  • Babu GJ, Rao CR (2004) Goodness–of–fit tests when parameters are estimated. Sankhya 66:63–74

    Google Scholar 

  • Bera, A. K., Mallick, N. C. (2002) Information matrix tests for the composed error frontier model. In: Balakrishnan N (Ed) Advances on methodological and applied aspects of probability and statistics. Gordon and Breach Science Publishers, London

  • Chang J, Hall P (2015) Double–bootstrap methods that use a single double-bootstrap simulation. Biometrika 102:203–214

    Article  Google Scholar 

  • Chen YT, Wang HJ (2012) Centered-residuals-based moment estimator and test for stochastic frontier models. Econometr Rev 31:625–653

    Article  Google Scholar 

  • Coelli T (1995) Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis. J Product Anal 6:247–268

    Article  Google Scholar 

  • Giacomini R, Politis DN, White H (2013) A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators. Econometr Theory 29:567–589

    Article  Google Scholar 

  • Henze N, Meintanis SG (2002) Goodness–of–fit tests based on a new characterization of the exponential distribution. Commun Statist - Theor Meth 31:1479–1497

    Article  Google Scholar 

  • Henze N, Meintanis SG (2005) Recent and classical tests for exponentiality: a partial review with comparisons. Metrika 61:29–45

    Article  Google Scholar 

  • Jammalamadaka SR, Taufer E (2003) Testing exponentiality by comparing the empirical distribution function of the normalized spacings with that of the original data. J Nonparametr Statist 15:719–729

    Article  Google Scholar 

  • Jiang J (2010) Large Sample Techniques for Statistics. Springer, New York

    Book  Google Scholar 

  • Kopp RJ, Mullahy J (1990) Moment-based estimation and testing of stochastic frontier models. J Econometr 46:165–183

    Article  Google Scholar 

  • Kumbhakar SC, Lovell KCA (2000) Stochastic Frontier Analysis. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Lee LF (1983) A test for distributional assumptions for the stochastic frontier functions. J Econometr 22:245–267

    Article  Google Scholar 

  • Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Inter Econom Rev 18:435–444

    Article  Google Scholar 

  • Meintanis SG (2007) A Kolmogorov-Smirnov type test for skew normal distributions based on the empirical moment generating function. J Statist Plann Inferen 137:2681–2688

    Article  Google Scholar 

  • Papadopoulos A, Parmeter CF (2021) Type II failure and specification testing in the stochastic frontier model. Europ J Operat Resear 293:990–1001

    Article  Google Scholar 

  • Sasvári, Z. (2013) Multivariate Characteristic and Correlation Functions. De Gruyter: Berlin

  • Schmidt P, Lin T (1984) Simple tests of alternative specifications in stochastic frontier models. J Econometr 24:349–361

    Article  Google Scholar 

  • Tsionas EG (2000) Full likelihood inference in normal-gamma stochastic frontier models. J Product Anal 13:183–205

    Article  Google Scholar 

  • Tsionas EG (2012) Maximum likelihood estimation of stochastic frontier models by the Fourier transform. J Econometr 170:234–248

    Article  Google Scholar 

  • Wang WS, Amsler C, Schmidt P (2011) Goodness of fit tests in stochastic frontier models. J Product Anal 35:95–118

    Article  Google Scholar 

  • Wheat P, Stead AD, Greene WH (2019) Robust stochastic frontier analysis: a Student’s t half normal model with application to highway maintenance costs in England. J Product Anal 51:21–38

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation for the constructive comments and helpful suggestions of the Associate Editor and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simos G. Meintanis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendices

Appendix A

Starting from Eq. (6) we obtain

$$\begin{array}{lll}{D}_{n}^{2}(t)&=&{S}_{n}^{2}(t)+{t}^{2}{C}_{n}^{2}(t)+2t{S}_{n}(t){C}_{n}(t)\\ &=&{\left(\frac{1}{n}\mathop{\sum }\limits_{j = 1}^{n}\sin ({\widehat{\widetilde{\varepsilon }}}_{j})\right)}^{2}+{t}^{2}{\left(\frac{1}{n}\mathop{\sum }\limits_{j = 1}^{n}\cos ({\widehat{\widetilde{\varepsilon }}}_{j})\right)}^{2}\\ &&+\,2t\left(\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}\sin ({\widehat{\widetilde{\varepsilon }}}_{j})\right)\left(\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}\cos ({\widehat{\widetilde{\varepsilon }}}_{j})\right)\\ &=&\frac{1}{{n}^{2}}\mathop{\sum }\limits_{j,k=1}^{n}\sin ({\widehat{\widetilde{\varepsilon }}}_{j})\sin ({\widehat{\widetilde{\varepsilon }}}_{k})+\frac{{t}^{2}}{{n}^{2}}\mathop{\sum }\limits_{j,k=1}^{n}\cos ({\widehat{\widetilde{\varepsilon }}}_{j})\cos ({\widehat{\widetilde{\varepsilon }}}_{k})\\ &&+\,\frac{2t}{{n}^{2}}\mathop{\sum }\limits_{j,k=1}^{n}\sin ({\widehat{\widetilde{\varepsilon }}}_{j})\cos ({\widehat{\widetilde{\varepsilon }}}_{k}),\end{array}$$

where we write ∑j,k for the double sum ∑jk. Also recall the trigonometric identities

$$\begin{array}{l}\sin {z}_{1}\sin {z}_{2}=\frac{1}{2}[\cos ({z}_{1}-{z}_{2})-\cos ({z}_{1}+{z}_{2})]\\ \cos {z}_{1}\cos {z}_{2}=\frac{1}{2}[\cos ({z}_{1}-{z}_{2})+\cos ({z}_{1}+{z}_{2})]\\ \sin {z}_{1}\cos {z}_{2}=\frac{1}{2}[\sin ({z}_{1}-{z}_{2})+\sin ({z}_{1}+{z}_{2})]\end{array}$$

Now plug the above expression for \({D}_{n}^{2}(t)\) into the test statistic (7) and substitute the above product formulae, and integrate term-by-term the resulting expression. Then after some grouping we obtain (8) by making use of the integrals

$$\int\nolimits_{-\infty }^{\infty }\cos (tz){e}^{-\lambda | t| }dt=\frac{2\lambda }{{z}^{2}+{\lambda }^{2}},$$
$$\int\nolimits_{-\infty }^{\infty }{t}^{2}\cos (tz){e}^{-\lambda | t| }dt=\frac{4\lambda ({\lambda }^{2}-3{z}^{2})}{{\left({z}^{2}+{\lambda }^{2}\right)}^{3}},$$
$$\int\nolimits_{-\infty }^{\infty }t\sin (tz){e}^{-\lambda | t| }dt=\frac{4z\lambda }{{\left({z}^{2}+{\lambda }^{2}\right)}^{2}}.$$

Equation (16) may be proved by following analogous steps, but we also need the extra integrals

$$\int\nolimits_{-\infty }^{\infty }{t}^{4}\cos (tz){e}^{-\lambda | t| }dt=\frac{48\lambda (5{z}^{4}-10{z}^{2}{\lambda }^{2}+{\lambda }^{4})}{{\left({z}^{2}+{\lambda }^{2}\right)}^{5}},$$
$$\int\nolimits_{-\infty }^{\infty }{t}^{3}\sin (tz){e}^{-\lambda | t| }dt=\frac{48z\lambda ({\lambda }^{2}-{z}^{2})}{{\left({z}^{2}+{\lambda }^{2}\right)}^{4}}.$$

Appendix B

Starting from Eq. (6) and using \(\sin (z)=z-({z}^{3}/3!)+\ldots\) and \(\cos (z)=1-({z}^{2}/2!)+\ldots\), we obtain (in increasing powers of t)

$$\begin{array}{lll}{D}_{n}(t)&=&t\left(\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}+1\right)-\frac{{t}^{3}}{2!}\left(\frac{1}{3}\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}^{3}+\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}^{2}\right)\\ &&+\,\ldots \,,\end{array}$$

and by squaring

$$\begin{array}{lll}{D}_{n}^{2}(t)&=&{t}^{2}{\left(\frac{1}{n}\mathop{\sum }\limits_{j = 1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}+1\right)}^{2}\\ &&-\,{t}^{4}\left(\frac{1}{3}\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}^{3}+\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}^{2}\right)\left(\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}+1\right)\\ &&+\,\ldots \,.\end{array}$$

Plugging the above expression in Eq. (7) and integrating term-by-term leads to

$$\begin{array}{lll}{T}_{n,w}&=&n\,\left[\frac{4}{{\lambda }^{3}}{\left(\frac{1}{n}\mathop{\sum }\limits_{j = 1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}+1\right)}^{2}\right.\\ &&-\,\frac{48}{{\lambda }^{5}}\left(\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}+1\right)\left(\frac{1}{3}\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}^{3}+\frac{1}{n}\mathop{\sum }\limits_{j=1}^{n}{\widehat{\widetilde{\varepsilon }}}_{j}^{2}\right)\\ &&+\left.\,\ldots \right],\end{array}$$

and by taking the limit as λ → , we readily obtain (9), where we made use of the integral

$$\int\nolimits_{-\infty }^{\infty }| t{| }^{m}{e}^{-\lambda | t| }dt=\frac{2m!}{{\lambda }^{m+1}},\,m=1,2,\ldots \,.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meintanis, S.G., Papadimitriou, C.K. Goodness--of--fit tests for stochastic frontier models based on the characteristic function. J Prod Anal 57, 285–296 (2022). https://doi.org/10.1007/s11123-022-00632-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-022-00632-5

JEL classification

Keywords

Navigation