Skip to main content
Log in

Evaluation of new Cu(II) complexes as a novel class of inhibitors against plant carbonic anhydrase, glutathione reductase, and photosynthetic activity in photosystem II

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Increasing inefficiency of production of important agricultural plants raises one of the biggest problems in the modern world. Herbicide application is still the best method of weed management. Traditional herbicides blocking only one of the plant metabolic pathways is ineffective due to the rapid growth of herbicide-resistant weeds. The synthesis of novel compounds effectively suppressing several metabolic processes, and therefore achieving the synergism effect would serve as the alternative approach to weed problem. For this reason, recently, we synthesized a series of nine novel Cu(II) complexes and four ligands, characterized them with different analyses techniques, and carried out their primary evaluation as inhibitors of photosynthetic electron transfer in spinach thylakoids (design, synthesis, and evaluation of a series of Cu(II) based metal–organic complexes as possible inhibitors of photosynthesis, J Photochem Photobiol B, submitted). Here, we evaluated in vitro inhibitory potency of these agents against: photochemistry and carbonic anhydrase activity of photosystem II (PSII); α-carbonic anhydrase from bovine erythrocytes; as well as glutathione reductase from chloroplast and baker’s yeast. Our results show that all Cu(II) complexes excellently inhibit glutathione reductase and PSII carbonic anhydrase activity. Some of them also decently inhibit PSII photosynthetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PSII, PSI:

Photosystem II and photosystem I, respectively

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione disulfide

F o, F m :

Minimum and maximum chlorophyll fluorescence intensity emitted by dark-acclimated samples, respectively

F v/F m :

Maximum quantum yield of primary photosystem II photochemistry

EDTA:

Ethylenediaminetetraacetic acid

TyrZ:

Tyrosine Z, redox active tyrosines in the D1 protein of PSII

P680 :

PSII reaction center chlorophyll dimer

GR:

Glutathione reductase

DMSO:

Dimethyl sulfoxide

CA:

Carbonic anhydrase

Q A, Q B :

Primary and secondary quinone electron acceptors of PSII

NADFH:

Nicotinamide adenine dinucleotide phosphate, reduced form

QSAR:

Quantitative structure–activity relationship

IC50 :

Half maximal inhibitory concentration

pIC50 :

−log10(IC50)

HOMO:

Highest occupied molecular orbital

References

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464. doi:10.1111/j.1399-3054.1989.tb05667

    Article  CAS  Google Scholar 

  • Anderegg G, International Union of Pure and Applied Chemistry. Commission on Equilibrium Data (1977) Critical survey of stability constants of EDTA complexes: critical evaluation of equilibrium constants in solution; part A: stability constants of metal complexes. Pergamon Press, Oxford

    Google Scholar 

  • Anderson NG, Wilbur KM (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron M, Arellano JB, Gorge JL (1995) Copper and photosystem II: a controversial relationship. Physiol Plant 94:174–180

    Article  CAS  Google Scholar 

  • Baszynski T, Krupa Z (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus—direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190

    Google Scholar 

  • Beckie HJ, Tardif FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:15–28

    Article  CAS  Google Scholar 

  • Burda K, Kruk J, Schmid GH, Strzalka K (2003) Inhibition of oxygen evolution in Photosystem II by Cu(II) ions is associated with oxidation of cytochrome b559. Biochem J 371:597–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. In: Meister A (ed) Methods in enzymology. Glutamate, glutamine, glutathione, and related compounds, 1st edn, vol 113. Academic Press, Orlando, pp 484–490

    Chapter  Google Scholar 

  • Cedeno-Maldonado A, Swader JA, Heath RL (1972) The cupric ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts. Plant Physiol 50:98–701

    Article  Google Scholar 

  • Chen H, Chen J, Guo Y, Wen Y, Liu J, Liu W (2012) Evaluation of the role of the glutathione redox cycle in Cu(II) toxicity to green algae by a chiral perturbation approach. Aquat Toxicol 120–12:19–26. doi:10.1016/j.aquatox.2012.04.011

    Article  Google Scholar 

  • Cid A, Herrero C, Torres E, Abalde J (1995) Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat Toxicol 31(2):165–174. doi:10.1016/0166-445X(94)00071-W

    Article  CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40. doi:10.1007/BF00032920

    Article  CAS  PubMed  Google Scholar 

  • Cobb AH, Reade JPH (2010) Herbicides and plant physiology: second edition. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Connell JP, Mullet JE (1986) Pea chloroplast glutathione reductase: purification and characterization. Plant Physiol 82:351–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta J, Ananyev GM, Dismukes GC (2008) Photoassembly of the water-oxidizing complex in photosystem II. Coord Chem Rev 252(3–4):347–360. doi:10.1016/j.ccr.2007.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng C, Pan X, Wang S, Zhang D (2014) Cu2+ inhibits photosystem II activities but enhances photosystem I quantum yield of Microcystis aeruginosa. Biol Trace Elem Res 160:268. doi:10.1007/s12011-014-0039-z

    Article  CAS  PubMed  Google Scholar 

  • Deponte M, Urig S, Arscott LD, Fritz-Wolf K, Réau R, Herold-Mende C, Koncarevic S, Meyer M, Charvet ED, Ballou DP, Williams CH, Becker K (2005) Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase. J Biol Chem 280:20628–20637. doi:10.1074/jbc.M412519200

    Article  CAS  PubMed  Google Scholar 

  • Droppa M, Horváth G (1990) The role of copper in photosynthesis. Crit Rev Plant Sci 9(2):111–123. doi:10.1080/07352689009382284

    Article  CAS  Google Scholar 

  • Fangstrom I (1972) The effects of some chelating agents and their copper complexes on photosynthesis in Scenedesmus quadricauda. Physiol Plant 27:389–397. doi:10.1111/j.1399-3054.1972.tb03633.x

    Article  CAS  Google Scholar 

  • Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158. doi:10.1007/BF00228784

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Goebel CV, Doedens RJ (1971) The crystal and molecular structure of bis(phenoxyacetato)triaquocopper(II), a monomeric, pentacoordinate cupric carboxylate adduct. Inorg Chem 10(11):2607–2613. doi:10.1021/ic50105a048

    Article  CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  PubMed  Google Scholar 

  • Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Müller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jegerschold C, Arellano JB, Schroder WP, van Kan PJM, Baron M, Styring S (1995) Copper(II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy. BioChemistry 34:12747–12754. doi:10.1021/bi00039a034

    Article  CAS  PubMed  Google Scholar 

  • Kalt-Torres W, Burke JJ, Anderson JM (1984) Chloroplast glutathione reductase: purification and properties. Physiol Plant 61(2):271–278

    Article  CAS  Google Scholar 

  • Karacan MS, Zharmukhamedov SK, Mamaş S, Kupriyanova EV, Shitov AV, Klimov VV, Özbek N, Özmen Ü, Gündüzalp A, Schmitt FJ, Karacan N, Friedrich T, Los DA, Carpentier R, Allakhverdiev SI (2014) Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II. J Photochem Photobiol B 137:156–167. doi:10.1016/j.jphotobiol.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  • Karacan MS, Rodionova MV, Tunc T, Venedik KB, Mamas S, Shitov AV, Zharmukhamedov SK, Klimov VV, Karacan N, Allakhverdiev SI (2016) Characterization of nineteen antimony(III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase. Photosynth Res 130:167. doi:10.1007/s11120-016-0236-z

    Article  CAS  PubMed  Google Scholar 

  • Kingston R (2011) Pesticides and herbicides. In: JL Vincent, E Abraham, FA Moore, PM Kochanek, MP Fink (ed) Textbook of critical care, 6th edn. Elsevier Saunders, Edinburgh, pp 1362–1365

    Chapter  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Shuvalov VA, Krasnovsky AA (1982) Effect of extraction and re-addition of manganese on light reactions of photosystem-II preparations. FEBS Lett 148(2):307–312. doi:10.1016/0014-5793(82)80830-2

    Article  CAS  PubMed  Google Scholar 

  • Kráľová K, Šeršeň F, Blahová M (1994) Effects of Cu(II) complexes on photosynthesis in spinach chloroplasts. Aqua(aryloxyacetato)copper(II) complexes. Gen Physiol Biophys 13:483–491

    Google Scholar 

  • Kráľová K, Kissová K, Švajlenová O, Vančo J (2004) Biological activity of copper(II) N-salicylideneaminoacidato complexes. Reduction of chlorophyll content in freshwater alga Chlorella vulgaris and inhibition of photosynthetic electron transport in spinach chloroplasts. Chem Pap 58(5)357–361

    Google Scholar 

  • Kramer W, Wiley InterScience, (Online service) (2012) Modern crop protection compounds. Wiley-VCH, Weinheim

    Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47(2):259–266. doi:10.1093/jxb/47.2.259

    Article  Google Scholar 

  • Mapson LW, Isherwood FA (1963) Glutathione reductase from germinated peas. Biochem J 86:173–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martell AE, Smith RM (eds) (1982) Critical stability constants. First supplement. Springer, New York

    Google Scholar 

  • Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Götz B, Küpper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype). Plant Physiol 151:715–731. doi:10.1104/pp.109.144675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty N, Vass I, Demeter S (1989) Copper toxicity affects photosystem II electron transport at the secondary quinone acceptor, Q(B). Plant Physiol 90(1):175–179. doi:10.1104/pp.90.1.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami K, Tsubouchi R, Fukayama M, Yoshino M (2014) Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase. Biometals 27:551–558. doi:10.1007/s10534-014-9731-x

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484. doi:10.1111/j.1365-3040.2011.02400.x

    Article  CAS  PubMed  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Science 144, 31–43. doi:10.1017/S0021859605005708

    Article  Google Scholar 

  • Ouzounidou G, Moustakas M, Strasser RJ (1997) Sites of action of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photoacoustic signals. Aust J Plant Physiol 4:81–90. doi:10.1071/PP96028

    Article  Google Scholar 

  • Paulíková H, Berczeliová E (2005) The effect of quercetin and galangin on glutathione reductase. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149(2):497–500

    Article  PubMed  Google Scholar 

  • Pospíšil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta 1787:1151–1160. doi:10.1016/j.bbabio.2009.05.005

    Article  PubMed  Google Scholar 

  • Prout CK, Armstrong RA, Carruthers JR, Forrest JG, Murray-Rust P, Rossotti FJC (1968) Structure and stability of carboxylate complexes. Part 1. The crystal and molecular structures of copper(II) glycollate, dl-lactate, 2-hydroxy-2-methylpropionate, methoxyacetate, and phenoxyacetate. J Chem Soc A. doi:10.1039/J19680002791

    Google Scholar 

  • Schiller H, Dau H (2000) Preparation protocols for high-activity photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy. J Photochem Photobiol B 55:138–144. doi:10.1016/S1011-1344(00)00036-1

    Article  CAS  PubMed  Google Scholar 

  • Schröder WP, Arellano JB, Bittner T, Barón M, Eckert HJ, Renger G (1994) Flash-induced absorption spectroscopy studies of copper interaction with photosystem II in higher plants. J Biol Chem 269(52):32865–32870

    PubMed  Google Scholar 

  • Shitov AV, Pobeguts OV, Smolova TN, Allakhverdiev SI, Klimov VV (2009) Manganese-dependent carboanhydrase activity of photosystem II proteins. Biochemistry (Moscow) 74(5):509–517. doi:10.1134/S0006297909050058

    Article  CAS  Google Scholar 

  • Shitov AV, Zharmukhamedov SK, Shutova TV, Allakhverdiev SI, Samuelsson G, Klimov VV (2011) A carbonic anhydrase inhibitor induces bicarbonate-reversible suppression of electron transfer in pea photosystem 2 membrane fragments. J Photochem Photobiol B 104(1–2):366–371. doi:10.1016/j.jphotobiol.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  • Shutova T, Kenneweg H, Buchta J, Nikitina J, Terentyev V, Chernyshov S, Andersson B, Allakhverdiev SI, Klimov VV, Dau H, Junge W, Samuelsson G (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27(5):782–791. doi:10.1038/emboj.2008.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RM, Martell AE (1989) Critical stability constants: second supplement. Springer, New York

    Book  Google Scholar 

  • Smith G, O’Reilly EJ, Kennard CHL, Stadnicka K, Oleksyn B (1981) Metal-phenoxyalkanoic acid interactions. Part I. Crystal and molecular structures of diaquabis(p-chlorophenoxyacetato)zinc(II). Inorg Chim Acta 41:111–120. doi:10.1016/S0020-1693(00)89315-9

    Article  Google Scholar 

  • Stauber JL, Florence TM (1987) Mechanism of toxicity of ionic copper and copper complexes to algae. Mar Biol 94:511–519. doi:10.1007/BF00431397

    Article  CAS  Google Scholar 

  • Vencill WK, Nichols RL, Webster TM, Soteres JK, Mallory-Smith C, Burgos NR, Johnson WG, McClelland MR (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci 60(spI):2–30. doi:10.1614/WS-D-11-00206.1

    Article  Google Scholar 

  • Vierke G, Struckmeier P (1977) Binding of copper(II) to proteins of the photosynthetic membrane and its correlation with inhibition of electron transport in class II chloroplasts of spinach. Z Naturforsch C 32(7–8):605–610

    Google Scholar 

  • Wolosiuk RA, Buchanan BB (1977) Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature 266:565–567

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in Plants. Braz J Plant Physiol 17(1):145–156

    Article  CAS  Google Scholar 

  • Yruela I, Gatzen G, Picorel R, Holzwarth AR (1996a) Cu(II)-inhibitory effect on photosystem II from higher plants. A picosecond time-resolved fluorescence study. Biochemistry 35:9469–9474

    Article  CAS  PubMed  Google Scholar 

  • Yruela I, Pueyo JJ, Alonso PJ, Picorel R (1996b) Photoinhibition of photosystem II from higher plants: effect of copper inhibition. J Biol Chem 271(44):27408–27415. doi:10.1074/jbc.271.44.27408

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Yang EB, Tang WY, Wong KP, Mack P (1997) Inhibition of glutathione reductase by plant polyphenols. Biochem Pharmacol 54(9):1047–1053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Scientific and Technological Research Council of Turkey (TUBITAK-Project No. 212T089), by the Grants from Russian Foundation for Basic Research (Nos. 16-34-50257, 17-04-01011, 17-54-560012, 17-04-01289), and by Molecular and Cell Biology Programs from Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nurcan Karacan or Suleyman I. Allakhverdiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionova, M.V., Zharmukhamedov, S.K., Karacan, M.S. et al. Evaluation of new Cu(II) complexes as a novel class of inhibitors against plant carbonic anhydrase, glutathione reductase, and photosynthetic activity in photosystem II. Photosynth Res 133, 139–153 (2017). https://doi.org/10.1007/s11120-017-0392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0392-9

Keywords

Navigation