Skip to main content

Advertisement

Log in

Metabolism of xenobiotics by Chlamydomonas reinhardtii: Phenol degradation under conditions affecting photosynthesis

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the present work, the biodegradation of phenol by axenic cultures of the unicellular microalga Chlamydomonas reinhardtii was investigated. Biodegradation proved to be a dynamic bioenergetic process, affected by changes in the culture conditions. Microalgae biodegraded defined amounts of phenol, as a result of the induced stress caused at high concentrations, despite the fact that this process proved to be energy demanding and thus affected growth of the culture. High levels of biodegradation were observed both in the absence of an alternative carbon source and in the presence of acetate as a carbon source. Biodegradation of phenol by Chlamydomonas proved to be an aerobic, photoregulated process. This is the first time that Chlamydomonas reinhardtii has been used for bioremediation purposes. This study has demonstrated that the most important factor in the biodegradation of phenol is the selection of the appropriate culture conditions (presence or absence of alternative carbon source, light intensity, and oxygen availability) that provide the best bioenergetic balance among growth, induced stress, and biodegradation of phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCV:

Packed cell volume

Acetate:

Treatment with acetate as carbon source carried out into light

CO2 :

Treatment with carbon dioxide as carbon source carried out into light

Acetate + CO2 :

Treatment with both acetate and CO2 as carbon sources carried out into light

Limit C:

Treatment with limited carbon source carried out into light

t :

Time in days

X 0 :

Total initial cell biomass in the culture (mg) at the beginning of the experiment

X :

Total cell biomass in the culture (mg) at time t

S 0 :

Total initial amount (mg) of phenol at the beginning of the experiment

S :

Total amount (mg) of phenol at time t

μ :

Specific growth rate

Y X/S :

Observed growth yield calculated according to the equation Y X/S  = (X – X0)/(S 0 − S)

F 0 :

Minimum fluorescence that corresponds to the time that all photosynthetic reaction centers are open

F max :

Maximal fluorescence that corresponds to the time that all reaction centers are closed

F v :

Variable fluorescence (F max − F o)

F v/F max :

Photosynthetic efficiency

ABS/RC:

Size of the functional antenna per active reaction center

DI0/R C:

Dissipation energy per active reaction center

RC/CS0 :

Active reaction center density

TR0/ABS:

Quantum yield of primary photochemistry

C a :

Concentration of chlorophyll-a

C b :

Concentration of chlorophyll-b

C x+c :

Concentration of total carotenoids

nd:

Not detected

References

  • Basak B, Bhunia B, Dutta S, Chakraborty S, Dey A (2014) Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5. Environ Sci Pollut Res 21:1444–1454

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627. doi:10.1016/j.biortech.2009.09.043

    Article  CAS  PubMed  Google Scholar 

  • Ellis BE (1977) Degradation of phenolic compounds by fresh-water algae. Plant Sci Lett 8:213–216

    Article  CAS  Google Scholar 

  • Forrest WW (1969) Energetic aspects of microbial growth. Microbial energetics. Cambridge University Press, London, pp 65–86

    Google Scholar 

  • Hansch C, McKarns SC, Smith CJ, Doolittle DJ (2000) Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity. Chem Biol Interact 127(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook : a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95(2):200–203

    Article  CAS  PubMed  Google Scholar 

  • Jaromir M, Ozadowicz R, Duda W (2005) Analysis of chlorophenols, chlorocatechols, chlorinated methoxyphenols and monoterpenes in communal sewage of Lodz and in the Ner river n 1999-2000. Water Air Soil Pollut 164(1–4):205–222

    Google Scholar 

  • Ji M-K, Kabra AN, Choi J, Hwang J-H, Kim JR, Abou-Shanab RAI, Oh Y-K, Jeon B-H (2014) Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol Eng 73:260–269

    Article  Google Scholar 

  • Keith L, Telliard W (1979) Priority pollutants. I. A perspective view. Environ Sci Technol 13(4):416–423

    Article  Google Scholar 

  • Klekner V, Kosaric N (1992) Degradation of phenolic mixtures by Chlorella. Environ Technol 13:503–506

    Article  CAS  Google Scholar 

  • Lika K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146

    Article  CAS  Google Scholar 

  • Lima SA, Raposo MF, Castro PM, Morais RM (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38(1):97–102. doi:10.1016/j.watres.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen GH, Paul E (1998) Effect of the S-0/X-0 ratio on energy uncoupling in substrate-sufficient batch culture of activated sludge. Water Res 32(10):2883–2888. doi:10.1016/S0043-1354(98)00071-2

    Article  CAS  Google Scholar 

  • Lovell CR, Eriksen NT, Lewitus AJ, Chen YP (2002) Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds. Mar Ecol Prog Ser 229:11–18

    Article  CAS  Google Scholar 

  • Nakajima N, Teramoto T, Kasai F, Sano T, Tamaoki M, Aono M, Kubo A, Kamada H, Azumi Y, Saji H (2007) Glycosylation of bisphenol A by freshwater microalgae. Chemosphere 69(6):934–941. doi:10.1016/j.chemosphere.2007.05.088

    Article  CAS  PubMed  Google Scholar 

  • Navakoudis E, Lutz C, Langebartels C, Lutz-Meindl U, Kotzabasis K (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Bba-Gen Subj 1621(2):160–169. doi:10.1016/S0304-4165(03)00056-4

    Article  CAS  Google Scholar 

  • Oswald W, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans A Soc Civil Eng 122:73–105

    Google Scholar 

  • Papazi A, Kotzabasis K (2007) Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds - Exogenously supplied energy and carbon sources adjust the level of biodegradation. J Biotechnol 129(4):706–716. doi:10.1016/j.jbiotec.2007.02.021

    Article  CAS  PubMed  Google Scholar 

  • Park JB, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42. doi:10.1016/j.biortech.2010.06.158

    Article  CAS  PubMed  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24:2047–2051

    Article  CAS  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163(991):224–231

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J, Goldschmidt-Clermont A, Merchand S (1998) The molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis. Kluwer Academic Publishers, Dordrecht, p 7

    Google Scholar 

  • Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59(1):48–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62(4):1265–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senger H, Brinkmann G (1986) Protochlorophyll(ide) accumulation and degradation in the dark and photoconversion to chlorophyll in the light in pigment mutant C-2A’ of Scenedesmus obliquus. Physiol Plant 68:119–124

    Article  CAS  Google Scholar 

  • Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Matahis P (ed) Photosynthesis: From Light to Biosphere. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Sueoka N (1960) Mitotic Replication of Deoxyribonucleic Acid in Chlamydomonas Reinhardi. Proc Natl Acad Sci USA 46(1):83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thies F, Backhaus T, Bossmann B, Grimme LH (1996) Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon. Plant Physiol 112(1):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikoo V, Scragg AH, Shales SW (1997) Degradation of pentachlorophenol by microalgae. J Chem Tech Biotechnol 68:425–431

    Article  CAS  Google Scholar 

  • Tsuji N, Hirooka T, Nagase H, Hirata K, Miyamoto K (2003) Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var. vacuolata. Biotechnol Lett 25(3):241–244

    Article  CAS  PubMed  Google Scholar 

  • Varsha YM, Naga Deepthi CH, Chenna S (2011) An emphasis on xenobiotic degradation in environmental clean up. J Bioremed Biodegrad. doi:10.4172/2155-6199.S11-001

    Google Scholar 

  • Wellburn A (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Zhou GJ, Peng FQ, Yang B, Ying GG (2013) Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. Ecotoxicol Environ Saf 87:10–16. doi:10.1016/j.ecoenv.2012.10.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by the Greek General Secretariat of Research and Technology (Greece-Romania bilateral program 2011–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrios F. Ghanotakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazos, T.T., Kokarakis, E.J. & Ghanotakis, D.F. Metabolism of xenobiotics by Chlamydomonas reinhardtii: Phenol degradation under conditions affecting photosynthesis. Photosynth Res 131, 31–40 (2017). https://doi.org/10.1007/s11120-016-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0294-2

Keywords

Navigation