Skip to main content
Log in

Photosynthetic electron transport and proton flux under moderate heat stress

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Moderate heat stress has been reported to increase PSI cyclic electron flow (CEF). We subjected leaves of Arabidopsis (Arabidopsis thaliana) mutants disrupted in the regulation of one or the other pathway of CEF flow—crr2 (chlororespiratory reduction, deficient in regulation of chloroplast NAD(P)H dehydrogenase-dependent CEF) and pgr5 (proton gradient regulation, proposed to have reduced efficiency of antimycin-A-sensitive-CEF regulation) to moderate heat stress. Light-adapted leaves were switched from 23 to 40°C in 2 min. Gas exchange, chlorophyll fluorescence, the electrochromic shift (ECS), and P700 were measured. Photosynthesis of crr2 and pgr5 was more sensitive to heat and had less ability to recover than the genetic background gl. The proton conductance in light was increased by heat and it was twice as much in pgr5, which had much smaller light-induced proton motive force. We confirmed that P700 becomes more reduced at high temperature and show that, in contrast, the proportion of PSII open centers (with Q A oxidized) increases. The two mutants had much slower P700+ reduction rate during and after heat than gl. The proportion of light absorbed by PSI versus PSII was increased in gl and crr2 during and after heat treatment, but not in pgr5. We propose that heat alters the redox balance away from PSII and toward PSI and that the regulation of CEF helps photosynthesis tolerate heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PS:

Photosystem

RuBP:

Ribulose-1,5-bisphosphate

ΦPSII:

PSII quantum efficiency

NPQ:

Non-photochemical quenching

ECS:

Electrochromic shift

CEF:

Cyclic electron flow around PSI

NDH:

Chloroplast NAD(P)H dehydrogenase

ΔpH:

Transthylakoid pH gradient

ΔΨ:

Transthylakoid electrical potential

pmf :

Transthylakoid proton motive force

Q A :

Primary electron acceptor of PSII

qL:

A parameter estimating the fraction of PSII centers in the open state (with Q A oxidized)

qP:

Photochemical quenching coefficient, non-linearly related to the proportion of PSII centers in the open state

References

  • Armond PA, Björkman O, Staehelin HA (1980) Dissociation of supramolecular complexes in chloroplast membranes. A manifestation of heat damage to the photosynthetic apparatus. Biochim Biophys Acta 601:433–442. doi:10.1016/0005-2736(80)90547-7

    Article  PubMed  CAS  Google Scholar 

  • Avenson TJ, Cruz JA, Kramer DM (2004) Modulation of energy dependent quenching of excitons (qE) in antenna of higher plants. Proc Natl Acad Sci USA 101:5530–5535. doi:10.1073/pnas.0401269101

    Article  PubMed  CAS  Google Scholar 

  • Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005a) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713. doi:10.1073/pnas.0503952102

    Article  PubMed  CAS  Google Scholar 

  • Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE, Kramer DM (2005b) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28:97–109. doi:10.1111/j.1365-3040.2005.01294.x

    Article  CAS  Google Scholar 

  • Baker NR, Oxborough K (2004) In chlorophyll a fluorescence: a signature of photosynthesis. Chlorophyll fluorescence as a probe of photosynthetic productivity. Springer, Dordrecht, pp 65–82

    Google Scholar 

  • Baker NR, Harbinson J, Kramer DM (2007) Determining the limitations and regulations of photosynthetic energy transduction in leaves. Plant Cell Environ 30:107–125. doi:10.1111/j.1365-3040.2007.01680.x

    Article  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Bukhov NG, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:81–93. doi:10.1023/A:1006149317411

    Article  CAS  Google Scholar 

  • Bukhov NG, Samson G, Carpentier R (2000) Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady-state rate. Photochem Photobiol 72:351–357. doi:10.1562/0031-8655(2000)072<0351:NROTIE>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Cen YP, Sage RF (2005) The regulation of rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990. doi:10.1104/pp.105.066233

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435. doi:10.1073/pnas.230451497

    Article  PubMed  CAS  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field ΔΨ to steady-state transthylakoid proton motive force in vitro and in vivo. Control of pmf parsing into ΔΨ and ΔpH by counterion fluxes. Biochemistry 40:1226–1237. doi:10.1021/bi0018741

    Article  PubMed  CAS  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 Is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285. doi:10.1016/j.cell.2007.12.028

    Article  PubMed  CAS  Google Scholar 

  • Egorova EA, Bukhov NG, Heber U, Samson G, Carpentier R (2003) Effect of the pool size of stromal reductants on the alternative pathway of electron transfer to photosystem I in chloroplasts of intact leaves. Russ J Plant Physiol 50:431–440. doi:10.1023/A:1024700202498

    Article  CAS  Google Scholar 

  • Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457:5–8. doi:10.1016/S0014-5793(99)00989-8

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, Von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Encyclopedia of plant physiology new series. Springer-Verlag, Berlin, pp 549–589

    Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) activase-mediated activation of rubisco. Plant Physiol 116:539–546. doi:10.1104/pp.116.2.539

    Article  PubMed  CAS  Google Scholar 

  • Gounaris K, Brain APR, Quinn PJ, Williams WP (1984) Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim Biophys Acta 766:198–208. doi:10.1016/0005-2728(84)90232-9

    Article  CAS  Google Scholar 

  • Haldimann P, Gallé A, Feller U (2008) Impact of an exceptionally hot dry summer on photosynthetic traits in oak (Quercus pubescens) leaves. Tree Physiol 28:785–795

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549. doi:10.1046/j.1365-313X.2003.01900.x

    Article  PubMed  CAS  Google Scholar 

  • Havaux M (1996) Short-term responses of photosystem I to heat stress—induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth Res 47:85–97. doi:10.1007/BF00017756

    Article  CAS  Google Scholar 

  • Havaux M, Greppin H, Strasser RJ (1991) Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta 186:88–98. doi:10.1007/BF00201502

    Article  CAS  Google Scholar 

  • Havaux M, Tardy F, Ravenel J, Chanu D, Parot P (1996) Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ 19:1359–1368. doi:10.1111/j.1365-3040.1996.tb00014.x

    Article  CAS  Google Scholar 

  • Horváth EM, Peter SO, Joét T, Rumeau D, Cournac L, Horváth GV, Kavanagh TA, Schäfer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1349. doi:10.1104/pp.123.4.1337

    Article  PubMed  Google Scholar 

  • Joliot P, Joliot A (2005) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102:4913–4918. doi:10.1073/pnas.0501268102

    Article  PubMed  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268. doi:10.1007/BF01089043

    Article  CAS  Google Scholar 

  • Kobza J, Edwards GE (1987) Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol 83:69–74. doi:10.1104/pp.83.1.69

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218. doi:10.1023/B:PRES.0000015391.99477.0d

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Oja V, Rasulov B, Rämma H, Eichelmann H, Kasparova I, Pettai H, Padu E, Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ 25:923–943. doi:10.1046/j.1365-3040.2002.00873.x

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, San Diego, pp 350–382

    Google Scholar 

  • Long TA, Okegawa Y, Shikanai T, Schmidt GW, Covert SF (2008) Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport. Planta 228:907–918. doi:10.1007/s00425-008-0789-y

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668. doi:10.1093/jexbot/51.345.659

    Article  PubMed  CAS  Google Scholar 

  • Mohanty P, Vani B, Prakash JS (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch 57c:836–842

    Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic eletron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371. doi:10.1016/S0092-8674(02)00867-X

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyaka C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582. doi:10.1038/nature02598

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Shikanai T, Asada K (2005) Enhanced ferredoxin-dependent cyclic electron flow around photosystem I and a-tocopherol quinone accumulation in water-stressed ndhB-inactived tobacco mutants. Planta 222:502–511. doi:10.1007/s00425-005-1548-y

    Article  PubMed  Google Scholar 

  • Nandha B, Finazzi G, Joliot P, Hald S, Johnson GN (2007) The role of PGR5 in the redox poising of photosynthetic electron transport. Biochim Biophys Acta 1767:1252–1259. doi:10.1016/j.bbabio.2007.07.007

    Article  PubMed  CAS  Google Scholar 

  • Okegawa Y, Long TA, Iwano M, Takayama S, Kobayashi Y, Covert SF, Shikanai T (2007) A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Plant Cell Physiol 48:1462–1471. doi:10.1093/pcp/pcm116

    Article  PubMed  CAS  Google Scholar 

  • Ovaska J, Mäenpää P, Nurmi A, Aro E (1990) Distribution of chlorophyll–protein complexes during chilling in the light compared with heat-induced modifications. Plant Physiol 93:48–54. doi:10.1104/pp.93.1.48

    Article  PubMed  CAS  Google Scholar 

  • Partenskii MB, Dorman VL, Jordan PC (1998) Membrane stability under electrical stress: a nonlocal electrostatic treatment. J Chem Phys 109:10361–10371. doi:10.1063/1.477691

    Article  CAS  Google Scholar 

  • Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans. 1. Oxygen evolution and chlorophyll fluorescence. Plant Physiol 112:1245–1251

    PubMed  CAS  Google Scholar 

  • Pastenes C, Horton P (1999) Resistance of photosynthesis to high temperature in two bean varieties (Phaseolus vulgaris L.). Photosynth Res 62:197–203

    Article  CAS  Google Scholar 

  • Raffy S, Teissié J (1999) Control of lipid membrane stability by cholesterol content. Biophys J 76:2072–2080. doi:10.1016/S0006-3495(99)77363-7

    Article  PubMed  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051. doi:10.1111/j.1365-3040.2007.01675.x

    Article  PubMed  CAS  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97:14283–14288. doi:10.1073/pnas.97.26.14283

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106. doi:10.1111/j.1365-3040.2007.01682.x

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186. doi:10.1111/j.0031-9317.2004.0173.x

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064. doi:10.1104/pp.010357

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Burrow PA, Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429:115–118. doi:10.1016/S0014-5793(98)00573-0

    Article  PubMed  CAS  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735. doi:10.1111/j.1365-3040.2004.01172.x

    Article  CAS  Google Scholar 

  • Sharkey TD, Schrader SM (2008) High temperature stress. In: Rao KVM, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 101–130

    Google Scholar 

  • Sharkey TD, Badger MR, Von Caemmerer S, Andrews TJ (2001) Increased heat sensitivity of photosynthesis in tobacco plants with reduced rubisco activase. Photosynth Res 67:147–156. doi:10.1023/A:1010633823747

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040. doi:10.1111/j.1365-3040.2007.01710.x

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217. doi:10.1146/annurev.arplant.58.091406.110525

    Article  PubMed  CAS  Google Scholar 

  • Siebke K, Von Caemmerer S, Badger M, Furbank RT (1997) Expressing an RbcS antisense gene in transgenic Flaveria bidentis leads to an increased quantum requirement for CO2 fixed in photosystems I and II. Plant Physiol 115:1163–1174

    PubMed  CAS  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  PubMed  CAS  Google Scholar 

  • Weis E (1980) Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151:33–39. doi:10.1007/BF00384234

    Article  Google Scholar 

  • Weis E (1981) Reversible effects of high, sublethal temperatures on light-induced light scattering changes and electrochromic pigment absorption shift in spinach leaves. Z Pflanzenphysiol 101:169–178

    Google Scholar 

  • Weis E (1982) Influence of light on the heat sensitivity of the photosynthetic apparatus in isolated spinach chloroplasts. Plant Physiol 70:1530–1534. doi:10.1104/pp.70.5.1530

    Article  PubMed  CAS  Google Scholar 

  • Wellburn AR, Lichtenthaler H (1984) Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C (ed) Advances in photosynthesis research, vol 2. Martinus Mijhoff, The Hague, pp 9–12

    Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724. doi:10.1111/j.1365-3040.2004.01171.x

    Article  CAS  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505:355–427

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Toshiharu Shikanai and Dr. Archie Portis for mutant seeds. Dr. Stephen Schrader and Dr. Dafu Wang are thanked for the help on gas exchange machine build-up and the suggestions on planting mutants, respectively. We are grateful to Dr. David Kramer for excellent advice on our ECS measurements. We also appreciate the chlorophyll fluorescence equipment loaned by Dr. Robert Wise and the information from Dr. Cécile Ané about statistical analysis. The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2004-35100-14860.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Sharkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Sharkey, T.D. Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100, 29–43 (2009). https://doi.org/10.1007/s11120-009-9420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9420-8

Keywords

Navigation