Skip to main content
Log in

Temperature–Composition Dependence of Thermodynamic Mixing Functions of Co–Cr–Cu–Fe–Ni Melts

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

In the framework of the CALPHAD method, a thermodynamic database was developed for calculating the thermodynamic properties of liquid alloys in the Co–Cr–Cu–Fe–Ni system and its quaternary subsystems. The thermodynamic mixing functions of the melts were calculated at 1873 and 1500 K. The calculated excess integral mixing functions showed positive values in a major part of the composition space of the four-component systems with copper and the Co–Cr–Cu–Fe–Ni system. The ideal contribution to the Gibbs energy of mixing for four- and five-component melts of the Co–Cr–Cu–Fe–Ni system was predominant. The excess Gibbs energy of mixing for equiatomic liquid alloys of the four-component systems with copper and the Co–Cr–Cu–Fe–Ni system was lower in magnitude than the ideal component of the Gibbs mixing energy. With decreasing temperature, the positive deviations from the ideal behavior of the excess Gibbs mixing energy increased and the magnitude of the ideal Gibbs mixing energy decreased, resulting in lower thermodynamic stability of the liquid phase. The calculated separation temperatures for four- and five-component equiatomic Co–Cr–Cu–Fe–Ni melts varied in the 1370–1770 K range. The highest liquid-phase separation temperatures were observed in the melts containing both copper and chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. B. Cantor, J. Chang, P. Knight, and A. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Mater. Sci. Eng. A, 375, 213–218 (2004).

    Article  Google Scholar 

  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6, No. 5, 299–303 (2004).

    Article  CAS  Google Scholar 

  3. J.-W. Yeh, “Alloy design strategies and future trends in high-entropy alloys,” JOM, 65, No. 12, 1759–1771 (2013).

  4. F. Otto, Y. Yang, H. Bei, and E.P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys,” Acta Mater., 61, No. 7, 2628–2638 (2013).

    Article  CAS  Google Scholar 

  5. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, “Exploration and development of high entropy alloys for structural applications,” Entropy, 16, No. 1, 494–525 (2014).

  6. M.-H. Tsai and J.-W. Yeh, “High-entropy alloys: A critical review,” Mater. Res. Lett., 2, No. 3, 107–123 (2014).

    Article  Google Scholar 

  7. O.N. Senkov, J. Miller, D. Miracle, and C. Woodward, “Accelerated exploration of multi-principal element alloys for structural applications,” Calphad, 50, 32–48 (2015).

    Article  CAS  Google Scholar 

  8. B.S. Murty, J.-W. Yeh, and S. Ranganathan, “High-entropy alloys,” Mater. Res. Lett., 2, No. 3, 107–123(2014).

  9. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci., 61, 1–93 (2014).

    Article  Google Scholar 

  10. X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Mater. Chem. Phys., 132, No. 2, 233–238 (2012).

    Article  CAS  Google Scholar 

  11. O.N. Senkov and C. Woodward, “Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy,” Mater. Sci. Eng. A, 529, 311–320 (2011).

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, “Solid-solution phase formation rules for multi-component alloys,” Adv. Eng. Mater., 10, No. 6, 534–538 (2008).

    Article  CAS  Google Scholar 

  13. R. Raghavan, K.H. Kumar, and B. Murty, “Analysis of phase formation in multi-component alloys,” J. Alloys Compd., 544, 152–158 (2012).

    Article  CAS  Google Scholar 

  14. G. Arzpeyma, A.E. Gheribi, and M. Medraj, “On the prediction of Gibbs free energy of mixing of binary liquid alloys,” J. Chem. Therm., 57, 82–91 (2013).

    Article  CAS  Google Scholar 

  15. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, “Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metall. Mater. Trans. A, 36, No. 4, 881–893 (2005).

    Article  Google Scholar 

  16. X.F. Wang, Y. Zhang, Y. Qiao, and G. Chen, “Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys,” Intermetallics, 15, No. 3, 357–362 (2007).

  17. C. Li, J. Li, M. Zhao, and Q. Jiang, “Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys,” J. Alloys Compd., 475, No. 1, 752–757 (2009).

    Article  CAS  Google Scholar 

  18. N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P.K. Liaw, and N. Tsuji, “Recrystallization behavior of CoCrCuFeNi high-entropy alloy,” Metall. Mater. Trans. A, 46, No. 4, 1481–1487 (2015).

    Article  CAS  Google Scholar 

  19. J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou, “Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements,” Metall. Mater. Trans. A, 35, No. 8, 2533–2536 (2004).

    Article  Google Scholar 

  20. C.-M. Lin and H.-L. Tsai, “Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature,” J. Alloys Compd., 489, No. 1, 30–35 (2010).

    Article  CAS  Google Scholar 

  21. C.-M. Lin, H.-L. Tsai, and H.-Y. Bor, “Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy,” Intermetallics, 18, No. 6, 1244–1250 (2010).

    Article  CAS  Google Scholar 

  22. P.H. Wu, N. Liu, P.J. Zhou, Z. Peng, W.D. Du, X J. Wang, and Y. Pan, “Microstructures and liquid phase separation in multicomponent CoCrCuFeNi high entropy alloys,” Mater. Sci. Technol., 32, No. 6, 576–580 (2016).

    CAS  Google Scholar 

  23. W.L. Wang, L. Hu, S.B. Luo, L.J. Meng, D.L. Geng, and B. Wei, “Liquid phase separation and rapid dendritic growth of high-entropy CoCrCuFeNi alloy,” Intermetallics, 77, 41–45 (2016).

    Article  CAS  Google Scholar 

  24. N. Liu, P.H. Wu, P.J. Zhou, Z. Peng, X.J. Wang, and Y.P. Lu, “Rapid solidification and liquid-phase separation of undercooled CoCrCuFexNi high-entropy alloy,” Intermetallics, 72, 44–52 (2016).

    Article  CAS  Google Scholar 

  25. M.A. Turchanin and P.G. Agraval, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. V. Copper–cobalt system,” Powder Metall. Met. Ceram., 46, No. 1–2, 77–89 (2007).

    Article  CAS  Google Scholar 

  26. M.A. Turchanin, L.A. Dreval, A.R. Abdulov, and P.G. Agraval, “Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu–Fe–Co system,” Powder Metall. Met. Ceram., 50, No. 1–2, 98–116 (2011).

    Article  CAS  Google Scholar 

  27. M.A. Turchanin, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. III. Copper–chromium system,” Powder Metall. Met. Ceram., 45, No. 9–10, 457–467 (2006).

    Article  CAS  Google Scholar 

  28. M.A. Turchanin and P.G. Agraval, “Thermodynamics of liquid alloys, and stable and metastable phase equilibria in the copper–iron system,” Powder Metall. Met. Ceram., 40, No. 7–8, 337–353 (2001).

    CAS  Google Scholar 

  29. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov, “Phase equilibria and thermodynamics of binary copper systems with 3d-metals. VI. Copper–nickel system,” Powder Metall. Met. Ceram., 46, No. 9–10, 467–477 (2007).

    Article  CAS  Google Scholar 

  30. M.A. Turchanin, A.A. Bondar, L.A. Dreval, A.R. Abdulov, and P.G. Agraval, “Mixing enthalpies of melts and thermodynamic assessment of the Cu–Fe–Cr system,” Powder Metall. Met. Ceram., 53, No. 1–2, 70–90 (2014).

    Article  CAS  Google Scholar 

  31. L.A. Dreval, M.A. Turchanin, and P.G. Agraval, “Thermodynamic assessment of the Cu–Fe–Ni system,” J. Alloys Compd., 587, 533–543 (2014).

    Article  CAS  Google Scholar 

  32. L.A. Dreval, P.G. Agraval, M.A. Turchanin, A.I. Dovbenko, S.M. Ilienko, and G. Effenberg, “Thermodynamic database for directional search for promising compositions of precipitation-hardened HEAs,” Visn. Donbas. Derzh. Mashinobud. Akad., 41, No. 2, 24–29 (2017).

    Google Scholar 

  33. X.J. Liu, Z.P. Jiang, C.P. Wang, and K. Ishida, “Experimental determination and thermodynamic calculation of the phase equilibria in the Cu–Cr–Nb and Cu–Cr–Co systems,” J. Alloys Compd., 478, No. 1–2, 287–296 (2009).

    Article  CAS  Google Scholar 

  34. S. Curiotto, L. Battezzati, E. Johnson, and N. Pryds, “Thermodynamics and mechanism of demixing in undercooled Cu–Co–Ni alloys,” Acta Mater., 55, No. 19, 6642–6650 (2007).

    Article  CAS  Google Scholar 

  35. A. Kusoffsky and B. Jansson, “A thermodynamic evaluation of the Co–Cr and the C–Co–Cr systems,” Calphad, 21, No. 3, 321–333 (1997).

  36. F. Guillermet, “Assessment of the thermodynamic properties of the Ni–Co system,” Z. Metallkd., 78, No. 9, 639–647 (1987).

    Google Scholar 

  37. B.J. Lee, “Revision of thermodynamic descriptions of the Fe–Cr & Fe–Ni liquid phases,” Calphad, 17, No. 3, 251–268 (1993).

  38. B.J. Lee, “On the stability of Cr carbides,” Calphad, 16, No. 2, 121–149 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.G. Agraval.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 11–12 (536), pp. 113–126, 2020. Original article submitted October 8, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agraval, P., Dreval, L.O., Turchanin, M. et al. Temperature–Composition Dependence of Thermodynamic Mixing Functions of Co–Cr–Cu–Fe–Ni Melts. Powder Metall Met Ceram 59, 703–714 (2021). https://doi.org/10.1007/s11106-021-00205-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-021-00205-5

Keywords

Navigation