Skip to main content

Advertisement

Log in

Thermal Stability of Superhard Nitride Coatings from High-Entropy Multicomponent Ti–V–Zr–Nb–Hf Alloy

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Nitride coatings with high hardness (60.0–65.0 GPa) are produced from a high-entropy multicomponent single-phase alloy containing five nitride-forming elements by vacuum arc deposition with application of pulsed implantation. These high values of hardness are characteristic of metals in the equiatomic alloy only in nanostructured state. The mechanical properties of the coatings annealed in the temperature range up to 1200 °C are studied. It is established that the coatings are solid solutions of high-entropy nitride with fcc lattice. The vacuum coatings inherit the same type of crystal lattice as that of the target (bcc). The crystal lattice of high-entropy vacuum coatings is formed through the mechanism revealed in the cast alloys. The parameter of this lattice is close to that calculated by Vegard’s rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. A. Andreev, S. N. Grigor’ev, V. F. Gorban’, et al., “Vacuum arc nanostructured coatings,” Vest. MGTU Stankin, No. 3 (11), 14–18 (2010).

  2. J. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coat. Technol., 125, 332–330 (2000).

    Article  Google Scholar 

  3. Y. Zhang and Y. J. Zhou, “Solid solution formation criteria for high entropy alloys,” Mater. Sci. Forum, No. 561–565, 1337–1339 (2007).

  4. O. N. Senkov, J. M. Scott, S. V. Senkova, and D. B. Miracle, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” J. Alloys Compd., 509, No. 20, 6043–6048 (2011).

    Article  Google Scholar 

  5. S. A. Firstov, V. F. Gorban’, N. A. Krapivka, and É. P. Pechkovskii, “Hardening and mechanical properties of cast high-entropy alloys,” Kompos. Nanostrukt., No. 2, 5–20 (2011).

    Google Scholar 

  6. S. A. Firstov, V. F. Gorban’, N. A. Krapivka, et al., “Distribution of elements in cast multicomponent highentropy single-phase alloys with bcc lattice,” Kompos. Nanostrukt., No. 3, 48–64 (2012).

    Google Scholar 

  7. Shou-Yi Chang, Shao-Yi Lin, Yi-Chung Huang, and Chia-Liang Wu, “Mechanical properties, deformation behaviors, and interface adhesion of (AlCeTaiXr)N x multicomponent coatings,” Surf. Coat. Technol., No. 204, 3307–3314 (2010).

    Google Scholar 

  8. Cheng Keng-Hao, Lai Chia-Han, and Yen Jien-Wei, “Structural and mechanical properties of multielement (AlCrMoTaTiZr)N coatings by reactive magnetron sputtering,” Thin Sol. Films, 519, 3185–3190 (2011).

    Article  Google Scholar 

  9. Chia-Han Lai, SuJein Lin, Lein-Wei Yen, and Shou-Yi Changh, “Preparation and characterization of AlCrTaTiZr multielement nitride coatings,” Surf. Coat. Technol., Nо. 201, 3275–3280 (2006).

  10. A. A. Andreev, L. P. Sablev, V. M. Shulaev, and S. N. Grigor’ev, Vacuum Arc Devices and Coatings [in Russian], NSC KIPT, Kharkov (2005), p. 236.

    Google Scholar 

  11. S. R. Ignatovich and I. M. Zakiev, “Universal micro/nanoidentometer Micron-Gamma,” Zavod. Lab., 77, No. 1, 61–67 (2011).

    Google Scholar 

  12. Y. L. Hao, S. L. Li, S. Y. Sun, et al., “Elastic deformation behavior of Ti–24Nb–4Zn for biomedical application,” Sci. Dir., No. 3, 272–286 (2007).

    Google Scholar 

  13. S. G. Schneider, C. A. Nunes, S. O. Rogero, et al., “Mechanical properties and cytotoxic evaluation of the Ti–13Nb–13Zr alloy,” Biomechanics, No. 8, 84–87 (2000).

  14. S. A. Firstov, V. F. Gorban’, É. P. Pechkovskii, and N. A. Mameka, “Relation between strength characteristics of materials with automatic indentation indicators,” in: Materials Science [in Russian], No. 11, Nauka i Tekhnologii, Moscow (2007), pp. 26–31.

  15. S. A. Firstov, V. F. Gorban’, É. P. Pechkovskii, and N. A. Mameka, “Indentation equation,” Dop. NAN Ukrainy, No. 12, 100–106 (2007).

  16. S. A. Firstov, V. F. Gorban’, N. A, Krapivka, et al., “Mechanical properties of the multicomponent titanium alloy,” Probl. Prochn., No. 5, 178–189 (2010).

    Google Scholar 

  17. W. A. Dollase, “Correction of intensities for preferred orientation of the March model,” J. Appl. Crystallogr., 19, 267–272 (1986).

    Article  Google Scholar 

  18. S. A. Firstov, V. F. Gorban, T. G. Rogul, and E. P. Pechkovsky, “Ultimate strengthening theoretical and limit tool hardness,” Key Eng. Mater., 409, 128–136 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Firstov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 52, No. 9–10 (493), pp. 93–102, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firstov, S.A., Gorban’, V.F., Danilenko, N.I. et al. Thermal Stability of Superhard Nitride Coatings from High-Entropy Multicomponent Ti–V–Zr–Nb–Hf Alloy. Powder Metall Met Ceram 52, 560–566 (2014). https://doi.org/10.1007/s11106-014-9560-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-014-9560-z

Keywords

Navigation