Skip to main content
Log in

The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Leaf litter decomposition is an important process controlling nutrient cycling in most terrestrial ecosystems. We evaluated the relationships among traits of green leaves and decomposition rates of leaf litter (k) at different environmental scales and organisational levels (species and community). We also assessed the relationships at community level between k and the Leaf Economic Spectrum (LES) and between k and different soil variables.

Methods

We measured leaf traits in 38 woody species distributed in nine sampling sites along a topographic gradient in southern Spain. Leaf litter was collected for each species in each sampling site and incubated in a microcosm experiment with soil collected from the top 20 cm of each site.

Results

We found positive relationships between k and specific leaf area (SLA), leaf N, K and P and negative relationships with leaf dry matter content (LDMC) and leaf C isotopic composition (δ13C), both at species and community levels. Decomposability was positively related with the first PCA axis describing the LES and the relationships were consistent across all sites and within different zones or topographic positions. In addition, community weighted mean values of leaf traits (LESCWM) were stronger predictors of litter decomposition than soil variables.

Conclusions

A major finding of the present study is the main role that leaf traits, and the covariation among them (LES), play on decomposition process in Mediterranean ecosystems both at the species and community levels. In summary, our results support the idea that the suites of leaf traits have a strong control on the pace of C cycling, being the best drivers of decomposition processes under similar climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SLA:

Specific leaf area

LDMC:

Leaf dry matter content

δ13C:

Leaf carbon isotope ratio

LN:

Leaf nitrogen concentration

LP:

Leaf phosphorus concentration

LK:

Leaf potassium concentration

LES:

Leaf economic spectrum

CWM:

Community weighted mean

References

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Aponte C, García LV, Marañón T (2012) Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time. Ecosystems 15:1204–1218

    Article  CAS  Google Scholar 

  • Aponte C, García LV, Marañón T (2013) Tree species effects on nutrient cycling and soil biota: a feedback mechanism favouring species coexistence. Forest Ecol Manag 309:36–46

    Article  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover. Adv Ecological Res 38:1–421

    Article  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical change of scots pine needle litter. II. Influence of chemical composition. In: Persson T (ed) structure and function of northern coniferous forests—an ecosystem study. Ecol Bull 32:375–390

    Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA (2016) Understanding the dominant controls on litter decomposition. J Ecol 104:229–238

    Article  CAS  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR et al (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007) Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19–34

    Article  CAS  Google Scholar 

  • de la Riva EG, Pérez-Ramos IM, Navarro-Fernández C et al (2015) Data from: disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. -dryad digital repository- https://doi.org/10.5061/dryad.dr275

  • de la Riva EG, Pérez-Ramos IM, Navarro-Fernández C et al (2016a) Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos 125:354–363

    Article  Google Scholar 

  • de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NPR, Marañón T, Villar R (2016b) A plant economics spectrum in Mediterranean forests along environ- mental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199

    Article  Google Scholar 

  • de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016c) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS One 11:e0148788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Riva EG, Villar R, Pérez-Ramos IM, Quero JL, Matías L, Poorter L, Marañón T (2018) Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit. Trees 32:497–510

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    Article  CAS  PubMed  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH et al (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  CAS  PubMed  Google Scholar 

  • Edwards AWF (1992) Likelihood, expanded edition. Johns Hopkins Univ. press

  • Eichenberg D, Trogisch S, Huang Y, He JS, Bruelheide H (2015) Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. J Plant Ecol 8:401–410

    Article  Google Scholar 

  • Fanin N, Barantal S, Fromin N, Schimann H, Schevin P, Hättenschwiler S (2012) Distinct microbial limitations in litter and underlying soil revealed by carbon and nutrient fertilization in a tropical rainforest. PLoS One 7:e49990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanin N, Hättenschwiler S, Chavez Soria PF, Fromin N (2016) (a)synchronous availabilities of N and P regulate the activity and structure of the microbial decomposer community. Front Microbiol 6:1–13

    Article  Google Scholar 

  • Farquhar GD, Learyb MHO, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    CAS  Google Scholar 

  • Farquhar GD, Ehleringer IJR, Hubick KT, City SL, Farquhar GD, Ehleringer IJR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fernández-Mazuecos M, Vargas P (2010) Ecological rather than geographical isolation dominates quaternary formation of Mediterranean Cistus species. Mol Ecol 19:1381–1395

    Article  CAS  PubMed  Google Scholar 

  • Fetcher N, Oberbauer SF, Strain BR (1985) Vegetation effects on microclimate in lowland tropical forest in Costa Rica. Int J Biometeorol 29:145–155

    Article  Google Scholar 

  • Fortunel C, Garnier E, Joffre R et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611

    Article  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65

    Article  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of Southwest Spain: influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G (2004) Plant functional markers capture ecosystem properties. Ecology 85:2630–2637

    Article  Google Scholar 

  • Gowland K, (2013) 'Litter decomposability', PrometheusWiki, 13 Oct 2013, 02:33 UTC, < /tiki-pagehistory.php?page=Litter decomposability&preview=10> [accessed 29 Jun 2018]

  • Grigulis K, Lavorel S, Krainer U et al (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57

    Article  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Kazakou E, Violle C, Roumet C, Pintor C, Gimenez O, Garnier E (2009) Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Ann Bot 104:1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa H, Nakashizuka T (2008) Leaf herbivory and decomposability in a tropical rain forest. Ecology 89:2645–2656

    Article  PubMed  Google Scholar 

  • Liski J, Nissinen ARI, Erhard M, Taskinen O (2003) Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob Chang Biol:9575–9584

  • Liu G, Cornwell WK, Pan X et al (2014) Understanding the ecosystem implications of the angiosperm rise to dominance: leaf litter decomposability among magnoliids and other basal angiosperms (ed a Austin). J Ecol 102:337–344

    Article  Google Scholar 

  • López-Iglesias B, Olmo M, Gallardo A, Villar R (2014) Short-term effects of litter from 21 woody species on plant growth and root development. Plant Soil 381:177–191

    Article  CAS  Google Scholar 

  • Lowery B, Arshad MA, Lal R, Hickey WJ (1996) Soil water parameters and soil quality. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. American Society of Agronomy, Madison

    Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012) Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytol 196:489–496

    Article  CAS  PubMed  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producters and the decomposers in ecological systems. Ecology 14:322–331

    Article  Google Scholar 

  • Orme D (2013) The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5(2)

  • Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012) Evidence for a plant community economics spectrum driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327

    Article  Google Scholar 

  • Pietsch KA, Ogle K, Cornelissen JH et al (2014) Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Eco Biogeogr 23:1046–1057

    Article  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC et al (2009) Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J Ecol 97:801–811

    Article  CAS  Google Scholar 

  • Prieto I, Roumet C, Cardinael R et al (2015) Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373

    Article  Google Scholar 

  • Prieto I, Stokes A, Roumet C (2016) Root functional parameters predict fine root decomposability at the community level. J Ecol 104:725–733

    Article  CAS  Google Scholar 

  • Prieto I, Querejeta JI, Segrestin J, Volaire F, Roumet C (2018) Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Funct Ecol 32:612–625

    Article  Google Scholar 

  • Quero JL, Villar R, Marañon T, Zamora R (2006) Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. New Phytol 170:819–834

    Article  PubMed  Google Scholar 

  • Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole community litter quality and decomposition following land use change. Funct Ecol 21:1003–1183

    Article  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Romanyá J, Casals P, Cortina J, Bottner P, Couteaux MM, Vallejo VR (2000) CO2 efflux from a Mediterranean semi-arid forest soil. II Effects of soil fauna and surface stoniness. Biogeochemistry 48:283–306

    Article  Google Scholar 

  • Santiago LS (2007) Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88:1126–1131

    Article  PubMed  Google Scholar 

  • Sardans J, Peñuelas J (2015) Potassium: a neglected nutrient in global change. Glob Ecol Biogeogr 24:261–275

    Article  Google Scholar 

  • Sardans J, Peñuelas J, Coll M, Vayreda J (2012) Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Funct Ecol 26:1077–1089

    Article  Google Scholar 

  • Schlesinger WH, Hasey MM (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62:762–774

    Article  CAS  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Schuldt A, Bruelheide H, Durka W (2012) Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests. Ecol Lett 15:732–739

    Article  PubMed  Google Scholar 

  • Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454

    Article  PubMed  Google Scholar 

  • Sparks DL (1996) Methods of soil analysis, part 3: chemical methods. Soil Science Society of America and American Society of Agronomy, Madison

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publishers, Oxford

    Google Scholar 

  • Szefer P, Carmona CP, Chmel K et al (2017) Determinants of litter decomposition rates in a tropical forest: functional traits, phylogeny and ecological succession. Oikos 126:1101–1111

    Article  Google Scholar 

  • Tang LY, Han WX, Chen YH, Fang JY (2013) Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. J Plant Ecol 6:408–417

    Article  Google Scholar 

  • Verdú M, Pausas JG (2013) Syndrome driven diversification in a Mediterranean ecosystem. Evolution 67:1756–1766

    Article  PubMed  Google Scholar 

  • Vicente-Serrano SM, Zouber A, Lasanta T, Pueyo Y (2012) Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecol Monogr 82:407–428

    Article  Google Scholar 

  • Villar R, Ruiz-Robleto J, De Jong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643

    Article  CAS  PubMed  Google Scholar 

  • Villar R, Ruíz-Robleto J, Ubera JL, Poorter H (2013) Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species. Am J Bot 100:1969–1980

    Article  PubMed  Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis ofphylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428(6985):821

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Cornelissen JHC et al (2005) Assessing the generality of global leaf trait relationships. New Phytol 166:485–496

    Article  PubMed  Google Scholar 

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish MEC Projects DIVERBOS (CGL2011-30285-C02-01 and C02-02) and ECO-MEDIT (CGL2014-53236-R). We are grateful for the support of the staff in the IRNAS (CSIC) for soil analysis, and for the help of C. Navarro, J.P. Gómez and M. Olmo during field sampling and trait measurements. We are also grateful to Dr. T. Marañón for his comments on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique G. de la Riva.

Additional information

Responsible Editor: Zucong Cai.

Electronic supplementary material

ESM 1

(DOCX 3759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Riva, E.G., Prieto, I. & Villar, R. The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant Soil 435, 353–366 (2019). https://doi.org/10.1007/s11104-018-3883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3883-3

Keywords

Navigation