Skip to main content

Advertisement

Log in

Effect of contaminated soil on multitrophic interactions in a terrestrial system

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The effect of contaminated soil on multitrophic interactions in a terrestrial system was studied in a mesocosm experiment with European beech, larvae of summer chafer, and entomopathogenic nematodes (EPN).

Methods

Beech seedlings were grown in non-contaminated forest and garden soil contaminated with potential toxic elements Cd, Pb and Zn, and in the absence/presence of summer chafer larvae. Root morphology and ectomycorrhizal communities were analysed. Volatile organic compounds (VOC) emitted from beech roots were investigated by GC-MS. Humulene, β-caryophyllene, borneol and camphor were selected for chemotaxis assay with EPN Steinernema feltiae, S. carpocapsae and Heterorhabditis bacteriophora.

Results

Increased root tip density was observed as a response to soil contamination and root herbivory. Soil contamination decreased ectomycorrhizal species richness. Analyses of VOC yielded 14 different compounds. Results showed that the least mobile nematode species towards the VOC tested was S. feltiae. β-caryophyllene was an attractant for S. carpocapsae and humulene a weak attractant for H. bacteriophora.

Conclusions

Beech roots emitted VOC that affected movement of EPN. β-caryophyllene was detected in beech roots regardless of treatment, indicating that VOC that affect movement of EPN are emitted even in the absence of direct root herbivore attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments. In: Biogeochemistry, bioavailability and risks of metals, second ed. Springer-Verlag, New York

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Academic, London, pp 25–73

    Chapter  Google Scholar 

  • Agerer R, Rambold G (2004–2017) DEEMY – an information system for characterization and determination of ectomycorrhizae. München, Germany

  • Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36:361–368

    Article  CAS  PubMed  Google Scholar 

  • Andersen MK, Raulund-Rasmussen K, Strobel BW et al (2004) The effects of tree species and site on the solubility of Cd, Cu, Ni, Pb and Zn in soils. Water Air Soil Pollut 154(1-4):357–370

    Article  CAS  Google Scholar 

  • ARSO (2018) The basic data source. Archives of the National Meteorology Office. http://meteo.arso.gov.si/met/sl/app/webmet/#webmet==8Sdwx2bhR2cv0WZ0V2bvEGcw9ydlJWblR3LwVnaz9SYtVmYh9iclFGbt9SaulGdugXbsx3cs9mdl5WahxXYyNGapZXZ8tHZv1WYp5mOnMHbvZXZulWYnwCchJXYtVGdlJnOn0UQQdSf. Accessed Feb 2018

  • Atlas RM, Bartha R (1981) Microbial ecology: fundamentals and applications. Addison-Wesley Pub. Co.

  • Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742

    Article  CAS  PubMed  Google Scholar 

  • Bonito GM, Gryganskyi AP, Trappe JM et al (2010) A global meta-analysis of tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19:4994–5008

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Breckle SW, Kahle H (1992) Effects of toxic heavy metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.). Vegetatio 101:43–53

    Article  Google Scholar 

  • Chapman HD (1965) Cation-exchange capacity 1. Methods of soil analysis. Part 2. Chemical and Microbiological Properties, p 891-901

  • Colpaert JV, Wevers JHL, Krznaric E et al (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24

    Article  Google Scholar 

  • Dickinson NM, Turner AP, Lepp NW (1991) How do trees and other long-lived plants survive in polluted environments? Funct Ecol 5:5–11

    Article  Google Scholar 

  • Ditengou FA, Müller A, Rosenkranz M et al (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Huber M, Robert CAM et al (2013) The role pf plant primary and secondary metabolites in root-herbivore behavior, nutrition and physiology. In: Johnson SN, Hiltpold I, Turlings TJC (eds) Advances in insect physiology. Academic, Oxford, pp 53–95

    Google Scholar 

  • Erlandson SR, Savage JA, Cavender-Bares JM et al (2016) Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiol Ecol 92:fiv148

    Article  CAS  PubMed  Google Scholar 

  • Ernst WH (1998) The origin and ecology of contaminated, stabilized and non-pristine soils. In: Vangronsveld J, Cunningham SC (eds) Metal contaminated soils, in situ inactivation and phytorestoration. Springer, Berlin, p 17

    Google Scholar 

  • Foulon J, Zappelini C, Durand A et al (2016) Impact of poplar-based phytomanagement on soil properties and microbial communities in a metal-contaminated site. FEMS Microbiol Ecol 92:fiw163

    Article  CAS  PubMed  Google Scholar 

  • Furlan L, Kreutzweiser D (2015) Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Environ Sci Pollut Res 22:135–147

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • George GN, Gnida M, Bazylinski DA et al (2008) X-ray absorption spectroscopy as a probe of microbial sulfur biochemistry: the nature of bacterial sulfur globules revisited. J Bacteriol 190:6376–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grebenc T, Kraigher H (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol 9:279–287

    Article  CAS  PubMed  Google Scholar 

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI, New York

    Book  Google Scholar 

  • Hallem EA, Dillman AR, Hong AV et al (2011) A sensory code for host seeking in parasitic nematodes. CurrBiol 21:377–383

    Article  CAS  Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • He H, Xia JL, Jiang HC et al (2010) Sulfur species investigation in extra- and intracellular sulfur globules of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. Geomicrobiol J 27:707–713

    Article  CAS  Google Scholar 

  • Healy RA, Zurier H, Bonito G et al (2016) Mycorrhizal detection of native and non-native truffles in a historic arboretum and the discovery of a new north American species, Tuber arnoldianum sp. nov. Mycorrhiza 26:781–792

    Article  CAS  PubMed  Google Scholar 

  • Henke C, Kunert M, Veit D et al (2015) Analysis of volatiles from Picea abies triggered by below-ground interactions. Environ Exp Bot 110:56–61

    Article  CAS  Google Scholar 

  • Hiltpold I, Bernklau E, Bjostad LB et al (2013) Nature, evolution and characterisation of rhizospheric chemical exudates affecting root herbivores. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Behaviour and physiology of root herbivores. Academic, UK, pp 97–157

    Chapter  Google Scholar 

  • Hinsinger P, Plassard C, Tang C et al (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • ISO 10390:2005 (2005) Soil quality - determination of pH. International Organization for Standardization, Geneve

    Google Scholar 

  • ISO 10694:1995 (1995) Soil quality - determination of organic and total carbon after dry combustion (elementary analysis). International Organization for Standardization, Geneve

    Google Scholar 

  • ISO 11466:1995 (1995) Soil quality - extraction of trace elements soluble in aqua regia. International Organization for Standardization, Geneve

    Google Scholar 

  • ISO 11464:2006 (2006) Soil quality -- pretreatment of samples for physico-chemical analysis. International Organization for Standardization, Geneve

    Google Scholar 

  • Jagodič A, Ipavec N, Trdan S et al (2017) Attraction behaviours: are synthetic volatiles, typically emitted by insect-damaged Brassica nigra roots, navigation signals for entomopathogenic nematodes (Steinernema and Heterorhabditis)? BioControl 62:515–524

    Article  CAS  Google Scholar 

  • Jelušič M, Leštan D (2015) Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses. Chemosphere 138:1001–1007

    Article  CAS  PubMed  Google Scholar 

  • Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and aboveground insect herbivory. New Phytol 210:413–418

    Article  PubMed  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102:429–442

    Article  CAS  Google Scholar 

  • Jones A, Panagos P, Barcelo S et al (2012) The state of soil in Europe-A contribution of the JRC to the European Environment Agency’s environment state and outlook report–SOER 2010

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kramer R, Abraham WR (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37

    Article  CAS  Google Scholar 

  • Krpata D, Peintner U, Langer I et al (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol Res 112:1069–1079

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laznik Ž, Košir IJ, Rozman L et al (2011) Preliminary results of variability in mechanical-induced volatile root-emissions of different maize cultivars. Maydica 56:343–350

    Google Scholar 

  • Laznik Ž, Trdan S (2013) An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Exp Parasitol 134:349–355

    Article  CAS  PubMed  Google Scholar 

  • Laznik Ž, Trdan S (2015) Failure of entomopathogens to control white grubs (Coleoptera: Scarabaeidae). Acta Agric Scand Sect B Soil Plant Sci 65:95–108

    Google Scholar 

  • Laznik Ž, Trdan S (2016) Attraction behaviors of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect-damaged carrot roots. J Pest Sci 89:977–984

    Article  Google Scholar 

  • Marescotti P, Roccotiello E, Zotti M et al (2013) Influence of soil mineralogy and chemistry on fungi and plants in a waste-rock dump from the Libiola mine (eastern Liguria, Italy). Per Mineral 82:141–162

    Google Scholar 

  • Mauriello G, Marino R, D'Auria M et al (2004) Determination of volatile organic compounds from truffles via SPME-GC-MS. J Chromatogr Sci 42:299–305

    Article  CAS  PubMed  Google Scholar 

  • McBride MB (1989) Reactions controlling heavy metal solubility in soils. In: Advances in soil science. Springer, New York, p 1-56

  • McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835

    Article  Google Scholar 

  • Müller A, Faubert P, Hagen M et al (2013) Volatile profiles of fungi – Chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33

    Article  CAS  PubMed  Google Scholar 

  • O’Halloran DM, Burnell AM (2003) An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127:375–385

    Article  PubMed  Google Scholar 

  • ÖNORM L 1087:1993 (1993) Bestimmung von pflanzenverfügbarem Phosphat und Kalium nach der Calcium-Acetat-Lactat (CAL)-Methode. Österreichisches Normungsinstitut, Wien (A)

  • ÖNORM L 1086-1 (2001) Chemische Bodenuntersuchungen: Bestimmung der austauschbaren Kationen und der effektiven Kationen-Austauschkapazität (KAKeff) durch Extraktion mit Bariumchlorid-Lösung, Österreichisches Normungsinstitut, Wien (A)

  • Peñuelas J, Asensio D, Tholl D et al (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891

    Article  CAS  PubMed  Google Scholar 

  • Qualley AV, Dudareva N (2008) Aromatic volatiles and their involvement in plant defense. In: Schaller A (ed) Induced plant resistance to herbivory. Springer Netherlands, Dordrecht, pp 409–432

    Chapter  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J et al (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  CAS  PubMed  Google Scholar 

  • Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369

    Article  Google Scholar 

  • Rasmann S, Hiltpold I, Ali J (2012) The role of root-produced volatile secondary metabolites in mediating soil interactions. In: Montanaro G, Cichio B (eds) Advances in selected plant physiology aspects. InTech, Rijeka, pp 269–290

    Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via Polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Splivallo R, Ottonello S, Mello A et al (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J et al (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirillini B, Verdelli G, Paolocci F et al (2000) The volatile organic compounds from the mycelium of Tuber borchii Vitt. Phytochem 55:983–985

    Article  CAS  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ et al (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A 92:4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udovič M, Leštan D (2009) Pb, Zn and cd mobility, availability and fractionation in aged soil remediated by EDTA leaching. Chemosphere 74:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Voglar D, Leštan D (2013) Pilot-scale washing of Pb, Zn and cd contaminated soil using EDTA and process water recycling. Chemosphere 91:76–82

    Article  CAS  PubMed  Google Scholar 

  • Weissteiner S, Huetteroth W, Kollmann M et al (2012) Cockchafer larvae smell host root scents in soil. PLoS One 7:e45827. 12 pp. https://doi.org/10.1371/journal.pone.0045827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MJ, Ehlers RU, Glazer I (2012) Entomopathogenic nematode foraging strategies – is Steinernema carpocapsae really an ambush forager? Nematol 14:389–394

    Article  Google Scholar 

  • Wisniewski L, Dickinson NM (2003) Toxicity of copper to Quercus robur (English oak) seedlings from a copper-rich soil. Environ Exp Bot 50:99–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was conducted within Horticulture No. P4-0013-0481, a programme funded by the Slovenian Research Agency. Part of this research was funded within Professional Tasks from the Field of Plant Protection, a programme funded by the Phytosanitary Administration of the Ministry of Agriculture, Forestry, and Food of the Republic of Slovenia. The authors acknowledge the financial support from the Slovenian Research Agency (public tender “Promoting employment of young PhDs” in 2015 and research core funding No. P4-0107 Forest biology, ecology and technology), Dr. Tine Grebenc for advice on phylogenetic analysis of T. menseri and Koppert for providing the commercial strains of entomopathogenic nematodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žiga Laznik.

Additional information

Responsible Editor: Timothy Cavagnaro.

Electronic supplementary material

ESM 1

(PDF 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voglar, G.E., Mrak, T., Križman, M. et al. Effect of contaminated soil on multitrophic interactions in a terrestrial system. Plant Soil 435, 337–351 (2019). https://doi.org/10.1007/s11104-018-03903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-03903-z

Keywords

Navigation