Skip to main content
Log in

Retention of dead standing plant biomass (marcescence) increases subsequent litter decomposition in the soil organic layer

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

We evaluated the impact of retaining dead standing biomass (marcescence) on subsequent litter decomposition in the soil organic layer.

Methods

Litter of plants that naturally keep dead standing biomass in various extents, Calamagrostis epigeios (keeps most of its dead biomass standing), Quercus robur (keeps some dead leaves on the tree), and Alnus glutinosa (all litter falls to the ground after senescence), were either exposed to environmental climate (ambient) conditions for one year or kept in a dry dark place. After a year, both litter treatments were placed in the soil organic layer for another year. We monitored the mass loss and chemical changes during decomposition.

Results

Changes in the chemical composition of aromatic components in C. epigeios litter and decreasing amounts of aromatic compounds in Q. robur and C. epigeios litter during exposure to ambient conditions indicate an effect of photodegradation on these compounds. The litter of Q. robur also exhibited accelerated subsequent litter decomposition in the soil organic layer. In contrast, an increase of aliphatic and aromatic compounds and a decrease of carbohydrates in A. glutinosa litter during exposure to ambient conditions rather points to leaching or microbial decay of labile compounds than an effect of photodegradation. Moreover, the subsequent decomposition of A. glutinosa litter in the soil organic layer was decelerated as compared to the unexposed litter.

Conclusions

Our results suggest that litter with comparably low quality (Q. robur and C. epigeios), as compared to litter with a high quality (A. glutinosa), is prone to photodegradation. This process facilitates subsequent decomposition in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

C:

Carbon

CP/MAS:

Cross polarization magic angle spinning

GC-MS:

Gas chromatography-mass spectrometry

N:

Nitrogen

NMR:

Nuclear magnetic resonance

OL:

Organic layer

OM:

Organic matter

PCA:

Principal component analysis

Py:

Pyrolysis

TMAH:

Tetramethylammonium hydroxide

UV:

Ultraviolet

References

  • Abadía A, Gil E, Morales F, Montanés L, Montserrat G, Abadía J (1996) Marcescence and senescence in a submediterranean oak (Quercus subpyrenaica E.H. Del Villar): photosynthetic characteristics and nutrient composition. Plant Cell Environ 19:685–694. doi:10.1111/j.1365-3040.1996.tb00403.x

    Article  Google Scholar 

  • Angst G, Heinrich L, Kögel-Knabner I, Mueller CW (2016) The fate of cutin and suberin of decaying leaves, needles and roots - inferences from the initial decomposition of bound fatty acids. Org Geochem 95:81–92. doi:10.1016/j.orggeochem.2016.02.006

    Article  CAS  Google Scholar 

  • Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc Natl Acad Sci U S A 107:4618–4622. doi:10.1073/pnas.0909396107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558. doi:10.1038/nature05038

    Article  CAS  PubMed  Google Scholar 

  • Austin AT, Araujo PI, Leva PE (2009) Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90:2642–2647. doi:10.1890/08-1804.1

    Article  PubMed  Google Scholar 

  • Austin AT, Méndez MS, Ballaré CL (2016) Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci 201516157. doi:10.1073/pnas.1516157113

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083. doi:10.1071/s97004

    Article  Google Scholar 

  • Brandt LA, King JY, Milchunas DG (2007) Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem. Glob Chang Biol 13:2193–2205. doi:10.1111/j.1365-2486.2007.01428.x

    Article  Google Scholar 

  • Cepáková Š, Tošner Z, Frouz J (2016) The effect of tree species on seasonal fluctuations in water-soluble and hot water-extractable organic matter at post-mining sites. Geoderma 275:19–27. doi:10.1016/j.geoderma.2016.04.006

    Article  Google Scholar 

  • Dunberg A (1982) Why beech and oak trees retain leaves until spring: a comment on the contribution by Otto and Nilsson. Oikos 39:275–277. doi:10.2307/3544497

    Article  Google Scholar 

  • Frouz J, Cajthaml T, Mudrák O (2011) The effect of lignin photodegradation on decomposability of Calamagrostis epigeios grass litter. Biodegradation 22:1247–1254. doi:10.1007/s10532-011-9479-8

    Article  CAS  PubMed  Google Scholar 

  • Frouz J, Livečková M, Albrechtová J, Chroňáková A, Cajthaml T, Pižl V, Háněl L, Starý J, Baldrian P, Lhotáková Z, Šimáčková H, Cepáková Š (2013) Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. For Ecol Manag 309:87–95. doi:10.1016/j.foreco.2013.02.013

    Article  Google Scholar 

  • Gehrke C, Johanson U, Callaghan TV, Chadwick D, Robinson CH (1995) The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the subarctic. Oikos 72:213–222. doi:10.2307/3546223

    Article  Google Scholar 

  • Helingerová M, Frouz J, Šantrůčková H (2010) Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecol Eng 36:768–776. doi:10.1016/j.ecoleng.2010.01.007

    Article  Google Scholar 

  • Ibrahima A, Joffre R, Gillon D (1995) Changes in litter during the initial leaching phase: an experiment on the leaf litter of Mediterranean species. Soil Biol Biochem 27:931–939. doi:10.1016/0038-0717(95)00006-Z

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G, Haumaier L, Zech W (2002) The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33:307–318. doi:10.1016/S0146-6380(01)00162-0

    Article  CAS  Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry 52:173–205. doi:10.1023/A:1006441620810

    Article  Google Scholar 

  • Mingo A, Oesterheld M (2009) Retention of dead leaves by grasses as a defense against herbivores. A test on the palatable grass Paspalum dilatatum Oikos 118:753–757. doi:10.1111/j.1600-0706.2008.17293.x

  • Moorhead DL, Callaghan T (1994) Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biol Fertil Soils 18:19–26. doi:10.1007/BF00336439

    Article  CAS  Google Scholar 

  • Otto C, Nilsson LM (1981) Why do beech and oak trees retain leaves until spring? Oikos 37:387–390. doi:10.2307/3544134

    Article  CAS  Google Scholar 

  • Parsons WFJ, Taylor BR, Parkinson D (1990) Decomposition of aspen (Populus tremuloides) leaf litter modified by leaching. Can J For Res 20:943–951. doi:10.1139/x90-127

    Article  Google Scholar 

  • Rozema J, Tosserams M, Nelissen HJM, Heerwaarden L, Broekman RA, Flierman N (1997) Stratospheric ozone reduction and ecosystem processes: enhanced UV-B radiation affects chemical quality and decomposition of leaves of the dune grassland species Calamagrostis epigeios. Plant Ecol 128:285–294. doi:10.1023/A:1009723210062

    Article  Google Scholar 

  • Sampedro I, Cajthaml T, Marinari S, Petruccioli M, Grego S, D’Annibale A (2009) Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus. Process Biochem 44:216–225. doi:10.1016/j.procbio.2008.10.016

    Article  CAS  Google Scholar 

  • Šmilauer P, Lepš P (2014) Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Uselman SM, Snyder KA, Blank RR, Jones TJ (2011) UVB exposure does not accelerate rates of litter decomposition in a semi-arid riparian ecosystem. Soil Biol Biochem 43:1254–1265. doi:10.1016/j.soilbio.2011.02.016

    Article  CAS  Google Scholar 

  • Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry. Pergamon Press, Oxford

    Google Scholar 

  • Yanni SF, Suddick EC, Six J (2015) Photodegradation effects on CO2 emissions from litter and SOM and photo-facilitation of microbial decomposition in a California grassland. Soil Biol Biochem 91:40–49. doi:10.1016/j.soilbio.2015.08.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant No. P504/12/1288 from the Czech Science Foundation and funds from the team project GAJU/04-158/2016/P at the University of South Bohemia. We also thank Jitka Hubačová for help with conducting the experiment, Carsten W. Mueller from the Technical University Munich, Chair of Soil Science for the possibility to write the manuscript at his department, Veronika Jílková for reading the manuscript, and two anonymous reviewers, whose comments helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Angst.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angst, Š., Cajthaml, T., Angst, G. et al. Retention of dead standing plant biomass (marcescence) increases subsequent litter decomposition in the soil organic layer. Plant Soil 418, 571–579 (2017). https://doi.org/10.1007/s11104-017-3318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3318-6

Keywords

Navigation