Skip to main content

Advertisement

Log in

Soil organic phosphorus transformation during ecosystem development: A review

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Soil organic phosphorus transformation during ecosystem development exerts a crucial influence on soil fertility and ecosystem properties.

Scope

This paper reviews the use of solution 31P NMR spectroscopy for characterizing organic phosphorus speciation in soil chronosequence and long-term field experiments in order to improve our understanding of the temporal changes, fundamental processes, and associated natural and anthropogenic controls of organic phosphorus transformation during long-term ecosystem evolution. Published soil chronosequence studies show that organic phosphorus compounds under aerobic conditions are dominated by phosphate monoesters (occurred mainly as inositol phosphates) followed by phosphate diesters (occurred mainly as DNA) and phosphonates, irrespective of the different parent materials, vegetation covers and climatic conditions. This contrasted markedly with wetland soils in which phosphate monoesters and diesters maintained approximately equal proportions, which is attributed to the limited reactive clay surfaces for stabilization and/or decomposition of myo-inositol hexakisphosphate under frequent anaerobic conditions. Most organic phosphorus compounds in soil chronosequences increase with age to reach a maximum and then decline with time, although the apex varies significantly among different organic phosphorus compounds and chronosequences. Variations of the potential for phosphorus stabilization resulting from mineralogical transformation, changes in phosphorus sources due to shifts in plant and microbial communities, and differences in the biological utilization of various phosphorus compounds have been suggested as three main mechanisms controlling the temporal changes in organic phosphorus species, abundance and availability during natural ecosystem development. In agricultural soils, the amounts, forms, and dynamics of organic phosphorus are determined by internal soil properties, external environmental conditions and managements, including the history and intensity of land use, different tillage practices and fertilizer treatments. These mechanisms are interlinked and more research is required to isolate both internal and external factors that regulate organic phosphorus transformation in agricultural ecosystems.

Conclusions

Given the universal dependence on organic phosphorus for life and its critical roles in biogeochemical cycling, we put forward several open questions that need to be resolved in the future studies by emphasizing the multidisciplinary collaborations, the use of multiple analytical techniques and the establishment of quantitative organic phosphorus transformation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdi D, Cade-Menun BJ, Ziadi N, Parent LE (2014) Long-term impact of tillage practices and phosphorus fertilization on soil phosphorus forms as determined by P nuclear magnetic resonance spectroscopy. J Environ Qual 43(4):1431–1441

    Article  PubMed  CAS  Google Scholar 

  • Achat DL, Morel C, Bakker MR, Augusto L, Pellerin S, Gallet-Budynek A, Gonzalez M (2010a) Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model. Soil Biol Biochem 42:2231–2240

    Article  CAS  Google Scholar 

  • Achat DL, Bakker MR, Zeller B, Pellerin S, Bienaime S, Morel C (2010b) Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization. Soil Biol Biochem 42:1479–1490

    Article  CAS  Google Scholar 

  • Adams AP, Bartholomew WV, Clark FE (1954) Measurement of nucleic acid components in soil. Soil Sci Soc Am J 18(1):40–46

    Article  CAS  Google Scholar 

  • Annaheim KE, Doolette AL, Smernik RJ, Mayer J, Oberson A, Frossard E, Bünemann EK (2015) Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by 31P NMR spectroscopy and enzyme additions. Geoderma 257:67–77

    Article  CAS  Google Scholar 

  • Bowman RA, Moir JO (1993) Basic EDTA as an extractant for soil organic phosphorus. Soil Sci Soc Am J 57(6):1516–1518

    Article  CAS  Google Scholar 

  • Briceño M, Escudey M, Galindo G, Borchardt D, Chang A (2006) Comparison of extraction procedures used in determination of phosphorus species by 31P-NMR in Chilean volcanic soils. Commun Soil Sci Plant Anal 37:1553–1569

    Article  CAS  Google Scholar 

  • Bünemann EK (2015) Assessment of gross and net mineralization rates of soil organic phosphorus: a review. Soil Biol Biochem 89:82–98

    Article  CAS  Google Scholar 

  • Bünemann EK, Marschner P, McNeill AM, McLaughlin MJ (2007) Measuring rates of gross and net mineralization of organic phosphorus in soils. Soil Biol Biochem 39:900–913

    Article  CAS  Google Scholar 

  • Cade-Menun BJ (2005a) Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize phosphorus in environmental samples. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 21–44

    Chapter  Google Scholar 

  • Cade-Menun BJ (2005b) Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 66:359–371

    Article  CAS  PubMed  Google Scholar 

  • Cade-Menun BJ (2015) Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma 257-258:101–114

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Liu CW (2013) Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: a review of sample preparation and experimental parameters. Soil Sci Soc Am J 78:19–37

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Preston CM (1996) A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci 161:770–785

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Berch SM, Preston CM, Lavkulich LM (2000) Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island I A comparison of two forest types. Can J Forest Res 30(11):1714–1725

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Liu CW, Nunlist R, McColl JG (2002) Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals and phosphorus relaxation times. J Environ Qual 31:457–465

    Article  CAS  PubMed  Google Scholar 

  • Cade-Menun BJ, Benitez-Nelson CR, Pellechia P, Paytan A (2005) Refining 31 P nuclear magnetic resonance spectroscopy for marine particulate samples: storage conditions and extraction recovery. Mar Chem 97(3):293–306

    Article  CAS  Google Scholar 

  • Cade-Menun BJ, Carter MR, James DC, Liu CW (2010) Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study. J Environ Qual 39(5):1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Celi L, Cerli C, Turner BL, Santoni S, Bonifacio E (2013) Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in northwestern Russia. Plant Soil 367(1–2):121–134

    Article  CAS  Google Scholar 

  • Cheesman AW, Dunne EJ, Turner BL, Reddy KR (2010a) Soil phosphorus forms in hydrologically isolated wetlands and surrounding pasture uplands. J Environ Qual 39:1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Cheesman AW, Turner BL, Reddy KR (2014) Forms of organic phosphorus in wetland soils. Biogeosciences 11(23):6697–6710

    Article  Google Scholar 

  • Chen CR, Condron LM, Turner BL, Mahieu N, Davis MR, Xu ZH, Sherlock RR (2004) Mineralization of soil orthophosphate monoesters under pine seedlings and ryegrass. Aust J Soil Res 42:189–196

    Article  CAS  Google Scholar 

  • Chen CR, Hou EQ, Condron LM, Bacon G, Esfandbod M, Olley J, Turner BL (2015) Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia. Geoderma 257-258:4–13

    Article  CAS  Google Scholar 

  • Claridge TDW (2009) High-resolution NMR techniques in organic chemistry, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment, Agronomy monograph no, vol 46. American Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Madison, pp 87–121

    Google Scholar 

  • Conte P, Šmejkalová D, Piccolo A, Spaccini R (2008) Evaluation of the factors affecting direct polarization solid state 31P-NMR spectroscopy of bulk soils. Eur J Soil Sci 59(3):584–591

    Article  CAS  Google Scholar 

  • Cook AM, Daughton CG, Alexander M (1978) Phosphonates utilization by bacteria. J Bacteriol 133:85–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corbridge DEC (2000) Phosphorus 2000. In: Chemistry, biochemistry and technology. Elsevier, New York

    Google Scholar 

  • Cosgrove DJ (1970) Inositol phosphate phosphatases of microbiological origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and D-chiro-inositol by a bacterial (pseudomonas sp.) phytase. Aust J Biol Sci 23(5):1207–1220

    Article  CAS  PubMed  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–1424

    Article  Google Scholar 

  • Dalal RC (1977) Soil organic phosphorus. Adv Agron 29:83–117

    Article  CAS  Google Scholar 

  • De Nobili M, Diaz-Ravina M, Brookes PC, Jenkinson DS (1996) Adenosine 5′– triphosphate measurements in soils containing recently added glucose. Soil Biol Biochem 28:1099–1104

    Article  CAS  Google Scholar 

  • Doolette AL, Smernik RJ (2011) Soil organic phosphorus speciation using spectroscopic techniques. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Springer, Berlin, pp 3–36

    Chapter  Google Scholar 

  • Doolette AL, Smernik RJ (2015) Quantitative analysis of 31P NMR spectra of soil extracts–dealing with overlap of broad and sharp signals. Magn Reson Chem 53:679–685

    Article  CAS  PubMed  Google Scholar 

  • Doolette AL, Smernik RJ, Dougherty WJ (2009) Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds. Soil Sci Soc Am J 73(3):919–927

    Article  CAS  Google Scholar 

  • Dou Z, Ramberg CF, Toth JD, Wang Y, Sharpley AN, Boyd SE, Chen CR, Williams D, Xu ZH (2009) Phosphorus speciation and sorption-desorption characteristics in heavily manured soils. Soil Sci Soc Am J 73(1):93–101

    Article  CAS  Google Scholar 

  • Eger A, Almond PC, Condron LM (2011) Pedogenesis, soil mass balance, phosphorus dynamics and vegetation communities across a Holocene soil chronosequence in a super-humid climate, South Westland, New Zealand. Geoderma 163(3):185–196

    Article  CAS  Google Scholar 

  • Elser J, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142

    Article  PubMed  Google Scholar 

  • Emsley J, Hall D (1976) The chemistry of phosphorus. Wiley, New York

    Google Scholar 

  • Fisher MM, Ramesh Reddy K, Turner BL, Keenan LW (2014) Millennial-scale phosphorus transformations during diagenesis in a subtropical peatland. Soil Sci Soc Am J 78(3):1087–1096

    Article  CAS  Google Scholar 

  • Gatiboni CL, Rheinheimer DDS, Flores AFC, Anghinoni I, Kaminski J, de Lima MAS (2005) Phosphorus forms and availability assessed by 31P NMR in successively cropped soil. Commun Soil Sci Plan 36(19–20):2625–2640

    Article  CAS  Google Scholar 

  • Giaveno C, Celi L, Richardson AE, Simpson RJ, Barberis E (2010) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol Biochem 42(3):491–498

    Article  CAS  Google Scholar 

  • Gorenstein DG (2012) Phosphorous-31 NMR: principles and applications. Academic, London

    Google Scholar 

  • Greaves MP, Anderson G, Webley DM (1967) The hydrolysis of inositol phosphates by Aerobacter aerogenes. Biochimica et Biophysica Acta (BBA)-Enzymology 132(2):412–418

    Article  CAS  Google Scholar 

  • Gulick A (1955) Phosphorus as a factor in the origin of life. Am Sci 43(3):479–489

    CAS  Google Scholar 

  • Harrison AF (1987) Soil organic phosphorus. A review of world literature, CAB International, Wallingford

    Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan B (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46(5):970–976

    Article  CAS  Google Scholar 

  • Horiguchi M, Kandatsu M (1959) Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature 184:901–902

    Article  CAS  PubMed  Google Scholar 

  • Huang LM, Zhang GL, Thompson A, Rossiter DG (2013) Pedogenic transformation of phosphorus during paddy soil development on calcareous and acid parent materials. Soil Sci Soc Am J 77(6):2078–2088

    Article  CAS  Google Scholar 

  • Huang LM, Thompson A, Zhang GL (2014) Long-term paddy cultivation significantly alters topsoil phosphorus transformation and degrades phosphorus sorption capacity. Soil Tillage Res 142:32–41

    Article  Google Scholar 

  • Huang LM, Thompson A, Zhang GL, Chen LM, Han GZ, Gong ZT (2015) The use of chronosequences in studies of paddy soil evolution: a review. Geoderma 237:199–210

    Article  CAS  Google Scholar 

  • Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32(3):155–172

    Article  Google Scholar 

  • Keeler J (2005) Understanding NMR spectroscopy. Wiley, Hoboken

    Google Scholar 

  • Kizewski F, Liu YT, Morris A, Hesterberg D (2011) Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. J Environ Qual 40(3):751–766

    Article  CAS  PubMed  Google Scholar 

  • Kovalev IV, Kovaleva NO (2011) Organophosphates in agrogray soils with periodic water logging according to the data of 31P NMR spectroscopy. Eurasian Soil Sci 44(1):29–37

    Article  CAS  Google Scholar 

  • Kowalenko CG, McKercher RB (1970) An examination of methods for extraction of soil phospholipids. Soil Biol Biochem 2(4):269–273

    Article  CAS  Google Scholar 

  • Lajtha K, Schlesinger WH (1988) The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology 69(1):24–39

    Article  CAS  Google Scholar 

  • Makarov MI, Haumaier L, Zech W (2002) Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biol Biochem 34(10):1467–1477

    Article  CAS  Google Scholar 

  • McDowell RW, Stewart I (2006) The phosphorus composition of contrasting soils in pastoral, native and forest management in Otago, New Zealand: sequential extraction and 31P NMR. Geoderma 130(1):176–189

    Article  CAS  Google Scholar 

  • McDowell RW, Stewart I, Cade-Menun BJ (2006) An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual 35:293–302

    Article  CAS  PubMed  Google Scholar 

  • McDowell RW, Cade-Menun B, Stewart I (2007a) Organic phosphorus speciation and pedogenesis: analysis by solution 31P nuclear magnetic resonance spectroscopy. Eur J Soil Sci 58(6):1348–1357

    Article  CAS  Google Scholar 

  • McDowell RW, Scott JT, Stewart I, Condron LM (2007b) Influence of aggregate size on phosphorus changes in a soil cultivated intermittently: analysis by 31P nuclear magnetic resonance. Biol Fertil Soils 43(4):409–415

    Article  CAS  Google Scholar 

  • McKercher RB, Anderson G (1968) Content of inositol penta-and hexaphosphates in some Canadian soils. J Soil Sci 19(1):47–55

    Article  CAS  Google Scholar 

  • McLaren TI, Smernik RJ, Simpson RJ, McLaughlin MJ, McBeath TM, Guppy CN, Richardson AE (2016) The chemical nature of organic phosphorus that accumulates in fertilized soils of a temperate pasture as determined by solution 31P NMR spectroscopy. J Plant Nutr Soil Sci. doi:10.1002/jpln.201600076

    Google Scholar 

  • Mueller-Harvey I, Wild A (1987) Isolation of a new sugar phosphate from forest leaf litter in Nigeria. Soil Biol Biochem 19(3):323–327

    Article  CAS  Google Scholar 

  • Müller C, Bünemann EK (2014) A 33P tracing model for quantifying gross P transformation rates in soil. Soil Biol Biochem 76:218–226

  • Murphy PNC, Bell A, Turner BL (2009) Phosphorus speciation in temperate basaltic grassland soils by solution 31P NMR spectroscopy. Eur J Soil Sci 60:638–651

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48(7):743–762

    Article  Google Scholar 

  • Nash DM, Haygarth PM, Turner BL, Condron LM, McDowell RW, Richardson AE, Watkins M, Heaven MW (2014) Using organic phosphorus to sustain pasture productivity: a perspective. Geoderma 221:11–19

    Article  CAS  Google Scholar 

  • Noack SR, McLaughlin MJ, Smernik RJ, McBeath TM, Armstrong RD (2014) Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant Soil 378(1–2):125–137

    Article  CAS  Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 133–164

    Chapter  Google Scholar 

  • Oehl F, Oberson A, Sinaj S, Frossard E (2001) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65(3):780–787

    Article  CAS  Google Scholar 

  • Oehl F, Frossard E, Fliessbach A, Dubois D, Oberson A (2004) Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol Biochem 36(4):667–675

    Article  CAS  Google Scholar 

  • Quirk J, Beerling DJ, Banwart SA, Kakonyi G, Romero-Gonzalez E, Leake JR (2012) Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol Lett 8:1006–1011

  • Redel YD, Escudey M, Alvear M, Conrad J, Borie F (2011) Effects of tillage and crop rotation on chemical phosphorus forms and some related biological activities in a Chilean Ultisol. Soil Use Manag 27(2):221–228

    Article  Google Scholar 

  • Requejo MI, Eichler-Löbermann B (2014) Organic and inorganic phosphorus forms in soil as affected by long-term application of organic amendments. Nutr Cycl Agroecosyst 100(2):245–255

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139(2):267–276

    Article  PubMed  Google Scholar 

  • Richardson AE, George TS, Hens M, Simpson RJ (2005) Utilization of soil organic phosphorus by higher plants. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, pp 165–184

    Chapter  Google Scholar 

  • Sanyal SK, De Datta SK (1991) Chemistry of phosphorus transformations in soil. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 1–120

    Google Scholar 

  • Saunders WMH, Williams EG (1955) Observations on the determination of total organic phosphorus in soils. J Soil Sci 6(2):254–267

    Article  CAS  Google Scholar 

  • Schneider KD, Cade-Menun BJ, Lynch DH, Voroney RP (2016) Soil phosphorus forms from organic and conventional forage fields. Soil Sci Soc Am J 80(2):328–340

  • Selmants PC, Hart SC (2010) Phosphorus and soil development: does the Walker and Syers model apply to semiarid ecosystems? Ecology 91(2):474–484

    Article  PubMed  Google Scholar 

  • Simpson AJ, Simpson MJ, Soong R (2012) Nuclear magnetic resonance spectroscopy and its key role in environmental research. Environ Sci Technol 46(21):11488–11496

    Article  CAS  PubMed  Google Scholar 

  • Sims JT, Sharpley AN (2005) Phosphorus: agriculture and the environment. Agronomy monograph no. 46. American Society of Agronomy, crop science Society of America and Soil Science Society of America, Madison

    Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25(1):53–88

    Article  Google Scholar 

  • Stewart JWB, Tiessen H (1987) Dynamics of soil organic phosphorus. Biogeochemistry 4(1):41–60

    Article  CAS  Google Scholar 

  • Stutter MI, Shand CA, George TS, Blackwell MSA, Dixon L, Bol R, MacKay RL, Richardson AE, Condron LM, Haygarth PM (2015) Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma 257:29–39

    Article  CAS  Google Scholar 

  • Tamburini F, Pfahler V, von Sperber C, Frossard E (2012) Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils. Environ Sci Technol 46(11):5956–5962

    Article  CAS  PubMed  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 75–86

    Google Scholar 

  • Turner BL (2007) Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoismoers. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CABI Publishing, Wallingford, pp 186–206

    Chapter  Google Scholar 

  • Turner BL (2008) Soil organic phosphorus in tropical forests: an assessment of the NaOH–EDTA extraction procedure for quantitative analysis by solution 31P NMR spectroscopy. Eur J Soil Sci 59(3):453–466

    Article  CAS  Google Scholar 

  • Turner BL, Blackwell MSA (2013) Isolating the influence of pH on the amounts and forms of soil organic phosphorus. Eur J Soil Sci 64(2):249–259

    Article  CAS  Google Scholar 

  • Turner BL, Engelbrecht BMJ (2011) Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103(1–3):297–315

    Article  CAS  Google Scholar 

  • Turner BL, Laliberté E (2015) Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern Australia. Ecosystems 18(2):287–309

    Article  CAS  Google Scholar 

  • Turner BL, Newman S (2005) Phosphorus cycling in wetland soils. J Environ Qual 34(5):1921–1929

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003a) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Sci Soc Am J 67(2):497–510

    Article  CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003b) The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy. Org Geochem 34(8):1199–1210

    Article  CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66(2):294–306

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Newman S, Newman JM (2006) Organic phosphorus sequestration in subtropical treatment wetlands. Environ Sci Technol 40(3):727–733

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Condron LM, Richardson SJ, Peltzer DA, Allison VJ (2007) Soil organic phosphorus transformations during pedogenesis. Ecosystems 10(7):1166–1181

    Article  CAS  Google Scholar 

  • Turner BL, Lambers H, Condron LM, Cramer MD, Leake JR, Richardson AE, Smith SE (2013) Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 367(1–2):225–234

    Article  CAS  Google Scholar 

  • Turner BL, Wells A, Condron LM (2014) Soil organic phosphorus transformations along a coastal dune chronosequence under New Zealand temperate rain forest. Biogeochemistry 121(3):595–611

    Article  CAS  Google Scholar 

  • Turrion MB, Lafuente F, Aroca MJ, Lopez O, Mulas R, Ruiperez C (2010) Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and 31P-NMR spectroscopy analysis. Sci Total Environ 408(16):3342–3348

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–447

    Article  CAS  Google Scholar 

  • Vestergren J, Vincent AG, Jansson M, Persson P, IIstedt U, Grobner G, Giesler R, Schleucher J (2012) High-resolution characterization of organic phosphorus in soil extracts using 2D 1H–31P NMR correlation spectroscopy. Environ Sci Technol 46(7):3950–3956

    Article  CAS  PubMed  Google Scholar 

  • Vincent AG, Schleucher J, Gröbner G, Vestergren J, Persson P, Jansson M, Giesler R (2012) Changes in organic phosphorus composition in boreal forest humus soils: the role of iron and aluminium. Biogeochemistry 108(1–3):485–499

    Article  CAS  Google Scholar 

  • Vincent AG, Vestergren J, Gröbner G, Persson P, Schleucher J, Giesler R (2013) Soil organic phosphorus transformations in a boreal forest chronosequence. Plant Soil 367(1–2):149–162

    Article  CAS  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20(1):5–15

    Article  PubMed  Google Scholar 

  • Vu DT, Tang C, Armstrong RD (2009) Tillage system affects phosphorus form and depth distribution in three contrasting Victorian soils. Aust J Soil Res 47:33–45

    Article  CAS  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15(1):1–19

    Article  CAS  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98(4):725–736

    Article  Google Scholar 

  • Wang JP, Wu YH, Zhou J, Bing HJ, Sun HY (2016) Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biol Fertil Soils. doi:10.1007/s00374-016-1123-7

    Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Chen ZH, Zhang XP, Liang WJ, Chen LJ (2014a) Tillage effects on phosphorus composition and phosphatase activities in soil aggregates. Geoderma 217:37–44

    Article  CAS  Google Scholar 

  • Wei K, Chen ZH, Zhu AN, Zhang JB, Chen LJ (2014b) Application of 31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices. Soil Tillage Res 138:35–43

    Article  Google Scholar 

  • Wilson MA (1987) NMR techniques and applications in geochemistry and soil chemistry. Pergamon Press, Oxford

    Google Scholar 

  • Zhou J, Wu YH, Prietzel J, Bing HJ, Yu D, Sun SQ, Luo J, Sun HY (2013) Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou glacier retreat area (Gongga Mountain, SW China). Geoderma 195:251–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Projects from National Natural Science Foundation of China (No. 41571130081, No. 41601221), National Key Research and Development Program (No. 2016YFC0501605), Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (No.LENOM2016Q0001) and State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (No. Y5V5001LYE). We greatly appreciate the constructive comments and suggestions from the editors and anonymous reviewers, according to which the manuscript has been improved.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lai-Ming Huang or Min-An Shao.

Additional information

Responsible Editor: Hans Lambers.

Electronic supplementary material

ESM 1

(DOCX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, LM., Jia, XX., Zhang, GL. et al. Soil organic phosphorus transformation during ecosystem development: A review. Plant Soil 417, 17–42 (2017). https://doi.org/10.1007/s11104-017-3240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3240-y

Keywords

Navigation