Skip to main content
Log in

Modelling the interactions between root system architecture, root functions and reactive transport processes in soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Soil-plant models always oversimplified the representation of soil chemical processes or root system. The objectives of the study were (i) to present a model overcoming such limitations, and (ii) to illustrate its relevance for the modelling of soil-plant interactions.

Methods

We coupled a root system architecture (RSA) model with a reactive transport model using a macroscopic approach. The two models were coupled sequentially using Fortran-C++ interoperability. We used the resulting model to investigate the case of phosphorus (P) acquisition from hydroxyapatite (HA) in an alkaline soil as induced by P and calcium (Ca) uptake and pH variations in the root zone. Important model parameters were issued of the literature and we tested its sensitivity to selected soil properties. Model sensitivity to grid size and time increment was evaluated as well.

Results

The simulations revealed that HA dissolution can contribute very substantially to P nutrition in case of rhizosphere alkalisation thanks to Ca and P uptake. Root-induced acidification was much more efficient at acquiring P, suggesting that ammonium-fed plants should be more P efficient. The variations of dissolved P in the root zone partly agreed with the observations, suggesting that P release was rather controlled by desorption when alkalisation occurs. The presence of more soluble minerals as well as the increase of Ca uptake should enhance P acquisition by crops.

Conclusion

We developed a new model and demonstrated the interest of the mechanistic description of geochemical processes with a spatially-explicit distribution of roots in soil while modelling soil-plant interactions. Results of its first application to P acquisition from a mineral source in an alkaline soil were overall consistent with the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad W, Singh B, Dijkstra FA, Dalal RC (2013) Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants. Soil Biol Biochem 57:549–555

    Article  CAS  Google Scholar 

  • Akhtar MS, Oki Y, Adachi T (2009) Mobilization and Acquisition of Sparingly Soluble P-Sources by Brassica Cultivars under P-Starved Environment II. Rhizospheric pH changes, Redesigned Root Architecture and Pi-Uptake Kinetics. J Integr Plant Biol 51:1024–1039

    Article  CAS  PubMed  Google Scholar 

  • Alt-Epping P, Tournassat C, Rasouli P, Steefel CI, Mayer KU, Jenni A, Mader U, Sengor SS, Fernandez R (2015) Benchmark reactive transport simulations of a column experiment in compacted bentonite with multispecies diffusion and explicit treatment of electrostatic effects. Comput Geosci 19:535–550

    Article  Google Scholar 

  • Andersson KO, Tighe MK, Guppy CN, Milham PJ, McLaren TI (2015) Incremental acidification reveals phosphorus release dynamics in alkaline vertic soils. Geoderma 259:35–44

    Article  Google Scholar 

  • Andersson KO, Tighe MK, Guppy CN, Milham PJ, McLaren TI, Schefe CR, Lombi E (2016) XANES demonstrates the release of calcium phosphates from alkaline Vertisols to moderately acidified solution. Environ Sci Technol 50:4229–4237

    Article  CAS  PubMed  Google Scholar 

  • Bea SA, Wilson SA, Mayer KU, Dipple GM, Power IM, Gamazo P (2012) Reactive Transport Modeling of Natural Carbon Sequestration in Ultramafic Mine Tailings. Vadose Zone J 11

  • Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P (2012) Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol Biochem 46:181–190

    Article  CAS  Google Scholar 

  • Blossfeld S, Gansert D, Thiele B, Kuhn AJ, Losch R (2011) The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biol Biochem 43:1186–1197

    Article  CAS  Google Scholar 

  • Bravin MN, Garnier C, Lenoble V, Gérard F, Dudal Y, Hinsinger P (2012) Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere. Geochim Cosmochim Acta 84:256–268

    Article  CAS  Google Scholar 

  • Cui YS, Weng LP (2013) Arsenate and Phosphate Adsorption in Relation to Oxides Composition in Soils: LCD Modeling. Environ Sci Technol 47:7269–7276

    CAS  PubMed  Google Scholar 

  • Daly KR, Keyes SD, Masum S, Roose T (2016) Image-based modelling of nutrient movement in and around the rhizosphere. J Exp Bot 67:1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JA, Coston JA, Kent DB, Fuller CC (1998) Application of the surface complexation concept to complex mineral assemblages. Environ Sci Technol 32:2820–2828

    Article  CAS  Google Scholar 

  • Devau N, Le Cadre E, Hinsinger P, Jaillard B, Gérard F (2009) Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl Geochem 24:2163–2174

    Article  CAS  Google Scholar 

  • Devau N, Le Cadre E, Hinsinger P, Gérard F (2010) A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Ann Bot 105:1183–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devau N, Hinsinger P, Le Cadre E, Colomb B, Gérard F (2011a) Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils. Geochim Cosmochim Acta 75:2980–2996

    Article  CAS  Google Scholar 

  • Devau N, Hinsinger P, Le Cadre E, Gérard F (2011b) Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments. Plant Soil 348:203–218

    Article  CAS  Google Scholar 

  • Doussan C, Pierret A, Garrigues E, Pages L (2006) Water uptake by plant roots: II - Modelling of water transfer in the soil root-system with explicit account of flow within the root system - Comparison with experiments. Plant Soil 283:99–117

    Article  CAS  Google Scholar 

  • Dunbabin VM, Postma JA, Schnepf A, Pages L, Javaux M, Wu LH, Leitner D, Chen YL, Rengel Z, Diggle AJ (2013) Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. Plant Soil 372:93–124

    Article  CAS  Google Scholar 

  • Duputel M, Van Hoye F, Toucet J, Gérard F (2013) Citrate adsorption can decrease soluble phosphate concentration in soils: Experimental and modeling evidence. Appl Geochem 39:85–92

    Article  CAS  Google Scholar 

  • Gérard F (2016) Clay minerals, iron/aluminum oxides, and phosphate sorption in soils – a myth revisited. Geoderma 262:213–226

    Article  Google Scholar 

  • Gérard F, Tinsley M, Mayer KU (2004) Preferential flow revealed by hydrologic modeling based on predicted hydraulic properties. Soil Sci Soc Am J 68:1526–1538

    Article  Google Scholar 

  • Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758

    Article  Google Scholar 

  • Guidry MW, Mackenzie FT (2003) Experimental study of igneous and sedimentary apatite dissolution: Control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim Cosmochim Acta 67:2949–2963

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen JB, Tang XY, Zhang FS (2011a) P for Two, Sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped Species. Plant Physiol 156:1078–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P, Brauman A, Devau N, Gérard F, Jourdan C, Laclau J-P, Le Cadre E, Jaillard B, Plassard C (2011b) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61

    Article  CAS  Google Scholar 

  • Javaux M, Couvreur V, Vander Borght J and Vereecken H 2013 Root Water Uptake: From Three-Dimensional Biophysical Processes to Macroscopic Modeling Approaches. Vadose Zone Journal 12.

  • Jones JB, Eck HV, Voss R (1990) Plant analysis as an aid in fertilizing corn and sorghum. In: Testing S, Analysis P, Edition T (eds) R L Westerman. pp 521-547 Soil Science Society of America

    Google Scholar 

  • Jungk A, Asher CJ, Edwards DG, Meyer D (1990) Influence of Phosphate Status on Phosphate-Uptake Kinetics of Maize (Zea - Mays) and Soybean (Glycine-Max). Plant Soil 124:175–182

    Article  CAS  Google Scholar 

  • Lasaga AC (1998) Kinetic theories in the earth sciences. Princeton Univ, Press, New Jersey

    Book  Google Scholar 

  • Latati M, Blavet D, Alkama N, Laoufi H, Drevon JJ, Gerard F, Pansu M, Ounane SM (2014) The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant Soil 385:181–191

    Article  CAS  Google Scholar 

  • Latati M, Bargaz A, Belarbi B, Lazali M, Benlahrech S, Tellah S, Kaci G, Drevon JJ, Ounane SM (2016) The intercropping common bean with maize improves the rhizobial efficiency, resource use, and grain yield under low phosphorus availability. Eur J Agron 72:80–90

    Article  CAS  Google Scholar 

  • Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth model based on L-Systems. Plant Soil 332:177–192

    Article  CAS  Google Scholar 

  • Li SX, Wang ZH, Stewart BA (2011) Differences of Some Leguminous and Nonleguminous Crops in Utilization of Soil Phosphorus and Responses to Phosphate Fertilizers. In: Advances in Agronomy. ELSEVIER ACADEMIC PRESS INC, San Diego, pp. 125–249

    Google Scholar 

  • Lide DR (2010) CRC handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton, 2758 pp

    Google Scholar 

  • Lofts S, Tipping E (1998) An assemblage model for cation binding by natural particulate matter. Geochim Cosmochim Acta 62:2609–2625

    Article  CAS  Google Scholar 

  • Loomer DB, Scott L, Al TA, Mayer KU, Bea S (2013) Diffusion-reaction studies in low permeability shale using X-ray radiography with cesium. Appl Geochem 39:49–58

    Article  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Maier U, Flegr M, Rugner H, Grathwohl P (2013) Long-term solute transport and geochemical equilibria in seepage water and groundwater in a catchment cross section. Environ Earth Sci 69:429–441

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM (1976) Critical stability constants, vol 4. Plenum Press, New York, NY, Inorganic complexes

    Google Scholar 

  • Marty NCM, Bildstein O, Blanc P, Claret F, Cochepin B, Gaucher EC, Jacques D, Lartigue JE, Liu SH, Mayer KU, Meeussen JCL, Munier I, Pointeau I, Su DY, Steefel CI (2015) Benchmarks for multicomponent reactive transport across a cement/clay interface. Comput Geosci 19:635–653

    Article  Google Scholar 

  • Masue-Slowey Y, Kocar BD, Jofre SAB, Mayer KU, Fendorf S (2011) Transport Implications Resulting from Internal Redistribution of Arsenic and Iron within Constructed Soil Aggregates. Environ Sci Technol 45:582–588

    Article  CAS  PubMed  Google Scholar 

  • Mayer KU, MacQuarrie KTB (2010) Solution of the MoMaS reactive transport benchmark with MIN3P-model formulation and simulation results. Comput Geosci 14:405–419

    Article  Google Scholar 

  • Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:1174–1195

    Article  Google Scholar 

  • Mayer KU, Amos RT, Molins S, Gérard F (2012) Reactive transport modeling in variably saturated media with MIN3P: Basic model formulation and model enhancements. In: Zhang F, Yeh GT, Parker JC, Shi X (eds) Groundwater reactive transport models. Bentham Science Publishers Ltd., pp. 187–212

  • McLaren TI, Guppy CN, Tighe MK, Schefe CR, Flavel RJ, Cowie BCC, Tadich A (2015) Validation of Soil Phosphate Removal by Alkaline and Acidic Reagents in a Vertosol Soil using XANES Spectroscopy. Commun Soil Sci Plant Anal 46:1998–2017

    Article  CAS  Google Scholar 

  • Molins S, Mayer KU, Amos RT, Bekins BA (2010) Vadose zone attenuation of organic compounds at a crude oil spill site - Interactions between biogeochemical reactions and multicomponent gas transport. J Contam Hydrol 112:15–29

    Article  CAS  PubMed  Google Scholar 

  • Mollier A, De Willigen P, Heinen M, Morel C, Schneider A, Pellerin S (2008) A two-dimensional simulation model of phosphorus uptake including crop growth and P-response. Ecol Model 210:453–464

    Article  Google Scholar 

  • Nowack B, Mayer KU, Oswald SE, Van-Beinum W, Appelo CAJ, Jacques D, Seuntjens P, Gérard F, Jaillard B, Schnepf A, Roose T (2006) Verification and intercomparison of reactive transport codes to describe root-uptake. Plant Soil 285:305–321

    Article  CAS  Google Scholar 

  • Oburger E, Kirk GJD, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41:449–457

    Article  CAS  Google Scholar 

  • Oelkers EH (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta 65:3703–3719

    Article  CAS  Google Scholar 

  • Pagès L (2014) Branching patterns of root systems: quantitative analysis of the diversity among dicotyledonous species. Ann Bot 114:591–598

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagès L, Picon-Cochard C (2014) Modelling the root system architecture of Poaceae. Can we simulate integrated traits from morphological parameters of growth and branching? New Phytol 204:149–158

    Article  PubMed  Google Scholar 

  • Pagès L, Becel C, Boukcim H, Moreau D, Nguyen C, Voisin AS (2014) Calibration and evaluation of ArchiSimple, a simple model of root system architecture. Ecol Model 290:76–84

    Article  Google Scholar 

  • Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L (2007) Root Functional Architecture: A Framework for Modeling the Interplay between Roots and Soil. Vadose Zone J 6:269–281

    Article  Google Scholar 

  • Postma JA, Lynch JP (2011) Root Cortical Aerenchyma Enhances the Growth of Maize on Soils with Suboptimal Availability of Nitrogen, Phosphorus, and Potassium. Plant Physiol 156:1190–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasouli P, Steefel CI, Mayer KU, Rolle M (2015) Benchmarks for multicomponent diffusion and electrochemical migration. Comput Geosci 19:523–533

    Article  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Schnepf A, Leitner D, Klepsch S (2012) Modeling Phosphorus Uptake by a Growing and Exuding Root System. Vadose Zone J 11

  • Shen JB, Yuan LX, Zhang JL, Li HG, Bai ZH, Chen XP, Zhang WF, Zhang FS (2011) Phosphorus Dynamics: From Soil to Plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sihota NJ, Mayer KU (2012) Characterizing Vadose Zone Hydrocarbon Biodegradation Using Carbon Dioxide Effluxes, Isotopes, and Reactive Transport Modeling. Vadose Zone J 11

  • Simunek J, Hopmans JW (2009) Modeling compensated root water and nutrient uptake. Ecol Model 220:505–521

    Article  Google Scholar 

  • Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical-species and kinetic precipitation dissolution reactions with application to reactive flow in single-phase hydrothermal systems. Am J Sci 294:529–592

    Article  CAS  Google Scholar 

  • Steefel CI, MacQuarrie KTB (1996) Approaches to modeling of reactive transport in porous media. In: Lichtner PC, Steefel CI, Oelkers EH (eds) Reactive transport in porous media. Reviews in Mineralogy. Mineralogical Society of America, pp. 229–268

  • Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, Lagneau V, Lichtner PC, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Simunek J, Spycher N, Yabusaki SB, Yeh GT (2015) Reactive transport codes for subsurface environmental simulation. Comput Geosci 19:445–478

    Article  Google Scholar 

  • Tang C, Unkovich MJ, Bowden JW (1999) Factors affecting soil acidification under legumes. III. Acid production by N2-fixing legumes as influenced by nitrate supply. New Phytol 143:513–521

    Article  CAS  Google Scholar 

  • Thaysen EM, Jacques D, Jessen S, Andersen CE, Laloy E, Ambus P, Postma D, Jakobsen I (2014) Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms. Biogeosciences 11:7179–7192

    Article  Google Scholar 

  • Tournier PH, Hecht F, Comte M (2015) Finite Element Model of Soil Water and Nutrient Transport with Root Uptake: Explicit Geometry and Unstructured Adaptive Meshing. Transp Porous Media 106:487–504

    Article  Google Scholar 

  • Tunesi S, Poggi V, Gessa C (1999) Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutr Cycl Agroecosyst 53:219–227

    Article  Google Scholar 

  • VanderKwaak J E, Forsyth P A, MacQuarrie K T B and Sudicky E A 1997 WatSolv - Sparse Matrix Iterative Solver, user's guide for version 2.16. Univ Waterloo, Waterloo, Canada.

  • Vrugt JA, van Wijk MT, Hopmans JW, Simunek J (2001) One-, two-, and three-dimensional root water uptake functions for transient modeling. Water Resour Res 37:2457–2470

    Article  Google Scholar 

  • Wang LJ, Nancollas GH (2008) Calcium Orthophosphates: Crystallization and Dissolution. Chem Rev 108:4628–4669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weligama C, Tang C, Sale PWG, Conyers MK, Liu DL (2008) Localised nitrate and phosphate application enhances root proliferation by wheat and maximises rhizosphere alkalisation in acid subsoil. Plant Soil 312:101–115

    Article  CAS  Google Scholar 

  • Weng LP, Vega FA, Van Riemsdijk WH (2011) Competitive and Synergistic Effects in pH Dependent Phosphate Adsorption in Soils: LCD Modeling. Environ Sci Technol 45:8420–8428

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh GT, Tripathi VS (1989) A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour Res 25:93–108

    Article  CAS  Google Scholar 

  • Zhang M, Li CL, Li YC, Harris WG (2014) Phosphate minerals and solubility in native and agricultural calcareous soils. Geoderma 232:164–171

    Article  Google Scholar 

  • Zhou MF, Li YC (2001) Phosphorus-sorption characteristics of calcareous soils and limestone from the southern Everglades and adjacent farmlands. Soil Sci Soc Am J 65:1404–1412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The coupling of MIN3P and ArchiSimple was performed thanks to the financial support of SYNGENTA Crop protection (Stein, Suisse) within the framework of the project ‘Pestdynasolroot’ with INRA. The authors are indebted to N. Moitrier for his technical advises on Fortran-C++ interoperability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Gérard.

Additional information

Responsible Editor: Philip John White.

Electronic supplementary material

ESM 1

(DOC 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, F., Blitz-Frayret, C., Hinsinger, P. et al. Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant Soil 413, 161–180 (2017). https://doi.org/10.1007/s11104-016-3092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3092-x

Keywords

Navigation