Skip to main content

Advertisement

Log in

Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Peanut yield and quality are seriously compromised by continuous monoculturing in the red soil region of southern China. Monoculturing can cause soil degradation and an increase in soil-borne diseases. This research aimed to investigate the influence of long-term peanut monocropping and different fertilization treatments on peanut growth, soil physical and chemical properties and soil microbial community.

Methods

A long-term fertilization experiment established in 1996 was utilized to examine the effect of various fertilization treatments including chemical and organic fertilizers treatments. Deep 16S rRNA gene pyrosequencing highlighted changes in the abundance and structure of bacterial communities, especially of the pathogenic and beneficial bacterial communities in long term chemical fertilizer treatment in comparison to the organic manure treatment.

Results

Chemical fertilizer treatment causes a shift in bacterial community structure and decrease in diversity under the long-term monocropping in comparison to organic fertilizer. The abundance of the bacterial pathogen Ralstonia solanacearum, a causative agent of peanut wilt, was found to be associated with a loss of community diversity and loss of the peanut yield.

Conclusions

The organic fertilizers more effectively increase microbial diversity in the soil and changed the community structure. Long-term use of the chemical fertilizer leads to a decrease in microbial diversity of the soil and an increase in R. solanacearum with associated increase of peanut wilt. The potential decrease in diversity and competition between the bacterial community and the pathogen may be a contributing factor to increased disease during long-term chemical fertilizer use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Martínez V, Burow G, Zobeck TM, Allen VG (2010) Soil microbial communities and function in alternative systems to continuous cotton. Soil Sci Soc Am J 74:1181–1192

    Article  Google Scholar 

  • Allen C, Prior P, Hayward AC (2005) Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society (APS Press)

  • Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    Article  CAS  PubMed  Google Scholar 

  • Buckley DH, Huangyutitham V, Nelson TA, Rumberger A, Thies JE (2006) Diversity of planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 72:4522–4531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao ZP, Han XM, Hu C, Chen J, Zhang DP, Yosef S (2011) Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Appl Soil Ecol 49:131–138

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Munns JB, Cathey HM (1980) Effectiveness of digested sewage sludge compost in supplying nutrients for soilless potting media. J Am Soc Hortic Sci 150:485–493

    Google Scholar 

  • Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol 64:450–460

    Article  PubMed  Google Scholar 

  • Chen HG, Li FD, Chen YX (1981) Soil microbiology. Shanghai Science Technology Press, Shanghai (in Chinese)

    Google Scholar 

  • Chen ZJ, Sheng XF, He LY, Huang Z, Zhang WH (2013) Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. J Hazard Mater 244:709–717

    Article  PubMed  Google Scholar 

  • Chistoserdova L, Jenkins C, Kalyuzhnaya MG, Marx CJ, Lapidus A, Vorholt JA, Staley JT, Lidstrom ME (2004) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21:1234–1241

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s guide and application published at: http://purl.oclc.org/estimates

  • Costa AL, Paixão SM, Caçador I, Carolino M (2007) CLPP and EEA profiles of microbial communities in salt marsh sediments. J Soils Sediments 7:418–425

    Article  CAS  Google Scholar 

  • Crecchio C, Curci M, Mininni R, Ricciuti P, Ruggiero P (2001) Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity. Biol Fertil Soils 34:311–318

    Article  CAS  Google Scholar 

  • Das R, Kazy SK (2014) Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. Environ Sci Pollut Res 21:7369–7389

    Article  CAS  Google Scholar 

  • Esperschütz J, Gattinger A, Mäder P, Schloter M, Fliessbach A (2007) Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations. FEMS Microbiol Ecol 61:26–37

    Article  PubMed  Google Scholar 

  • Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3(4):442–453

    Article  PubMed Central  PubMed  Google Scholar 

  • Freitag TE, Chang L, Clegg CD, Prosser JI (2005) Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Appl Environ Microbiol 71:8323–8334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill P, Krištůfek V, Dijkhuizen L, Boddy C, Kroetsch D, van-Elsas JD (2011) Land use intensity controls actinobacterial community structure. Microb Ecol 61:286–302

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu J, He X, Li D, Liu Q (2007) Progress in research of Sphingomonas. Chin J Appl Environ Biol 13:431

    CAS  Google Scholar 

  • Huang MY, Gu WJ, Zhang FB, Xu PZ, Yang SH, Wang LQ, Xie KZ (2011) Identification and fermentation of antagonistic bacterium against Ralstonia solanacearum. Chin Microbiol 38:214–220

    CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

    Article  CAS  PubMed  Google Scholar 

  • Justin PN, Emily BH, Ma.del Carmen AGC, Frank MH, David AZ, Jacqueline AAP, Richard L, Terry J (2012) Impacts of cropping systems and long-term tillage on soil microbial population levels and community composition in Dryland agricultural setting. ISRN Ecology. doi:10.5402/2012/487370

    Google Scholar 

  • Kong AYY, Scow KM, Córdova-Kreylos AL, Holmes WE, Six J (2011) Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol Biochem 43:20–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–890

    CAS  Google Scholar 

  • Larkin RP (2003) Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol Biochem 35:1451–1466

    Article  CAS  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li YM, Hu JC, Zhang J, Wang SL (2005) Microbial diversity in continuously planted Chinese fir soil. Chin J Appl Ecol 16:1275–1278

    CAS  Google Scholar 

  • Li PD, Dai CC, Wang XX, Zhang TL, Chen Y (2012) Variation of soil enzyme activities and microbial community structure in peanut monocropping system in subtropical China. Afr J Agric Res 7:1870–1879

    Google Scholar 

  • Li XG, Ding CF, Hua K, Zhang TL, Zhang YN, Zhao L, Yang YR, Liu JG, Wang XX (2014a) Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol Biochem 78:149–159

    Article  CAS  Google Scholar 

  • Li XG, Ding CF, Zhang TL, Wang XX (2014b) Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol Biochem 72:11–18

    Article  CAS  Google Scholar 

  • Lian CY, Wang XX, Li YL (2010) Effects of planting peanut and applying urea and organic materials on acidity of red soil. Soils (in Chinese) 42:822–827

    CAS  Google Scholar 

  • Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north china revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771

    Article  CAS  PubMed  Google Scholar 

  • Lipson DA, Schmidt SK (2004) Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl Environ Microbiol 70:2867–2879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, He XY (1991) Progress and achievement in the research on red soil in Jiangxi. Acta Agric Jiangxi (in Chinese) 1:014

    CAS  Google Scholar 

  • Liu JG, Li YB, Jiang GY, Bian XM, Li F, Geng W (2008) Allelopathic effects of cotton in continuous cropping. Allelopathy J 21:299–306

    Google Scholar 

  • Liu YX, Shi JX, Feng YG, Yang XM, Li X, Shen QR (2012) Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fertil Soils 47:239–248

    Google Scholar 

  • Lu RK (1999) Analytical methods of soil agricultural chemistry. China Agriculture Science and Technology Press, Beijing (in Chinese)

    Google Scholar 

  • Lwin M, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agric Biol 8(5):657–660

    Google Scholar 

  • Mannisto MK, Tiirola M, Haggblom MM (2007) Bacterial communities in Arctic fjelds of Finnish Lapland are stable but highly pH-dependent. FEMS Microbiol Ecol 59:452–465

    Article  CAS  PubMed  Google Scholar 

  • Margulies D, Melman G, Shanzer A (2005) Fluorescein as a model molecular calculator with reset capability. Nat Mater 4:768–771

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    Article  CAS  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Marta AP, Juan DA, Claudia SB, María JA (2014) 11 - role of Actinobacteria in bioremediation. Microb Biodegrad Biorem 2014:269–286

    Google Scholar 

  • Mays DA, Giordano DM (1989) Land spreading municipal waste compost. Biocycle 30:37–39

    Google Scholar 

  • McAndrew DW, Malhi SS (1992) Long-term N fertilization of a solonetzic soil: effects on chemical and biological properties. Soil Biol Biochem 24:619–623

    Article  Google Scholar 

  • Melero S, Madejon E, Herencia JF, Ruiz JC (2008) Effect of implementing organic farming on chemical and biochemical properties of an irrigated loam soil. Agron J 100:136–144

    Article  CAS  Google Scholar 

  • Mikhail MS, Sabet KK, Mohamed ME, Kenawy MH, Kasem KK (2005) Effect of compost and macronutrients on some cotton seedling diseases. Egypt J Phytopathol 33:41–52

    Google Scholar 

  • Moreira D (1998) Efficient removal of PCR inhibitors using agarose-embedded DNA preparations. Nucleic Acids Res 26:3309–3310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509

    Article  CAS  Google Scholar 

  • Naumoff DG, Dedysh SN (2012) Lateral gene transfer between the Bacteroidetes and Acidobacteria: the case of α-L-rhamnosidases. FEBS Lett 586:3843–3851

    Article  CAS  PubMed  Google Scholar 

  • Nie LX, Peng SB, Bouman BAM, Huang J, Cui K, Vispera RM, Xiang J (2008) Alleviating soil sickness caused by aerobic monocropping: responses of aerobic rice to nutrient supply. Field Crop Res 107:129–136

    Article  Google Scholar 

  • Nishio M, Kusano S (1973) Fungi associated with roots of continuously cropped upland rice. Soil Sci Plant Nutr 19:205–217

    Article  Google Scholar 

  • Oskay AM, Usame T, Cem A (2005) Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 3:441–446

    Google Scholar 

  • Peacock AD, Mullen MD, Ringelberg DB, Tyler DD, Hedrick DB, Gale PM, White DC (2001) Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol Biochem 33:1011–1019

    Article  CAS  Google Scholar 

  • Ramesh R, Joshi A, Ghanekar M (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the egg plant (Solanum melongena L.). World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167

    Article  Google Scholar 

  • Ribeiro H, Mucha AP, Marisa R, Almeida C, Bordalo AA (2013) Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Sci Total Environ 458:568–576

    Article  PubMed  Google Scholar 

  • Saha S, Prakash V, Kundu S, Kumar N, Minna BL (2008) Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N–W Himalaya. Eur J Soil Biol 44:309–315

    Article  CAS  Google Scholar 

  • Sarathchandra SU, Ghani A, Yeates GW, Burch G, Cox NR (2001) Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biol Biochem 33:953–964

    Article  CAS  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6, e27310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spain AM, Lee RK, Elshahed MS (2009) Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J 3:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Wang MZ, Chen XN (2005) Obstacle and countermeasure of sustainable high yield for peanut in low-hilly red soil region. J Peanut Sci (in Chinese) 34:17–22

    CAS  Google Scholar 

  • Wang XB, Luo YM, Li ZG, Liu WX, He YQ (2011) Effects of long-term stationary fertilization experiment on incidence of soil-borne diseases and biological characteristics of peanut in continuous monocropping system in red soil area. Acta Pedol Sin 48:725–730

    CAS  Google Scholar 

  • Watts DB, Torbert HA, Feng Y, Prior SA (2010) Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Sci 175:474–486

    Article  CAS  Google Scholar 

  • Wu M, Qin H, Chen Z, Wu J, Wei W (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil. Biol Fertil Soils 47:397–405

    Article  Google Scholar 

  • Xu K, Tang Y, Ren C, Zhao K, Sun Y (2013) Diversity and abundance of n-alkane-degrading bacteria in the near-surface soils of a Chinese onshore oil and gas field. Biogeosciences 10:2041–2048

    Article  CAS  Google Scholar 

  • Yuan SF, Wang LL, Wu K, Shi JX, Wang MS, Yang XM, Shen QR, Shen B (2014) Evaluation of Bacillus-fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Appl Soil Ecol 75:86–94

    Article  Google Scholar 

  • Zheng SX, Hu JL, Chen K, Yao J, Yu ZN, Lin XG (2009) Soil microbial activity measured by microcalorimetry in response to long-term fertilization regimes and available phosphorous on heat evolution. Soil Biol Biochem 4:2094–2099

    Article  Google Scholar 

  • Zhou XG, Gao DM, JLiu J, Qiao PL, Zhou XL, Lu HB, Wu X, Liu D, Jin X, Wu FZ (2014) Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. Eur J Soil Biol 60:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank National Natural Science Foundation of China (41471236, 41325003) and Jiangsu Provincial Natural Science Foundation of China (BK2012891) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuxing Liu.

Additional information

Responsible Editor: John A. Kirkegaard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 31 kb)

Figure S2

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Q., Wang, B. et al. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant Soil 395, 415–427 (2015). https://doi.org/10.1007/s11104-015-2569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2569-3

Keywords

Navigation