Skip to main content
Log in

Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Define the chemical factors structuring plant communities of three copper-cobalt outcrops (Tenke-Fungurume, Katangan Copperbelt, D. R. Congo) presenting extreme gradients.

Methods

To discriminate plant communities, 172 vegetation records of all species percentage cover were classified based on NMDS and the Calinski criterion. Soil samples were analyzed for 13 chemical factors and means compared among communities with ANOVA. Partial canonical correspondence analysis (pCCA) was used to determine amount of variation explained individually by each factor and site effect.

Results

Seven communities were identified. Six of the studied communities were related to distinct sites. Site effect (6.0 % of global inertia) was identified as the most important factor related to plant communities’ variation followed by Cu (5.5 %), pH (3.6 %) and Co (3.5 %). Unique contribution of site effect (3.8 %) was higher than that of Cu (1.1 %) and Co (1.0 %).

Conclusions

In restoration, not only Cu and Co contents will be important to maintain vegetation diversity, attention should also be given to co-varying factors potentially limiting toxicity of metals: pH, organic matter, Ca and Mn. Physical parameters were also identified as important in the creation of adequate conditions for diverse communities. Further studies should focus on the effect of physical parameters and geology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bamps P (1973–1993) Flore d’Afrique centrale (Zaïre-Rwanda-Burundi). Jardin Botanique National de Belgique, Meise, Belgique

  • Bizoux JP, Brevers F, Meerts P, Graitson E, Mahy G (2004) Ecology and conservation of Belgian populations of Viola calaminaria, a metallophyte with a restricted geographic distribution. Belg J Bot 137:91–104

    Google Scholar 

  • Board of trustees Kew Royal Botanic Gardens (1960–2010) Flora Zambesiaca. Royal Botanic Gardens, Kew, Richmond, United Kingdom

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeny DR (eds) Methods of soil analysis part 2 chemical and microbiological properties, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison

    Google Scholar 

  • Brooks RR, Malaisse F (1985) The heavy metal-tolerant flora of South-central Africa—a multidisciplinary approach. Balkema, Rotterdam

    Google Scholar 

  • Brooks RR, Baker AJM, Malaisse F (1992) Copper flowers. Res Explor 8:338–351

    Google Scholar 

  • Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt. J Afr Earth Sci 42:134–158. doi:10.1016/j.jafrearsci.2005.08.001

    Article  CAS  Google Scholar 

  • Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27

    Google Scholar 

  • Chiarucci A, Baker AJM (2007) Advances in the ecology of serpentine soils. A selection of papers from the Fifth International Conference on Serpentine Ecology, Siena, Italy, 9–13 May 2006. Plant and Soil 293: 217 pp

  • Chipeng F, Hermans C, Colinet G, Faucon M-P, Ngongo M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil 328:235–244. doi:10.1007/s11104-009-0105-z

    Article  CAS  Google Scholar 

  • Collins RN, Kinsela AS (2011) Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339:499–512. doi:10.1007/s11104-010-0584-y

    Article  CAS  Google Scholar 

  • Conservatoire et Jardin botaniques de la Ville de Genève and South African National Biodiversity Institute - Pretoria (2013) African plants database. 3.4.0 edn, Genève, Switzerland - Pretoria, South Africa

  • Delecour F, Kindermans M (1977) Manuel de description des sols. FUSAGx, Gembloux

    Google Scholar 

  • Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Duvigneaud P (1958) La végétation du Katanga et des sols métallifères. Bull Soc R Bot Belg 90:127–286

    Google Scholar 

  • Duvigneaud P, Denayer-De Smet S (1963) Cuivre et végétation au Katanga. Bull Soc R Bot Belg 96:92–231

    Google Scholar 

  • Ernst W (1974) Schwermetallvegetation der Erde. G. Fischer, Stuttgart

    Google Scholar 

  • Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36. doi:10.1007/s11104-007-9405-3

    Article  CAS  Google Scholar 

  • Faucon MP, Colinet G, Mahy G, Luhembwe MN, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212. doi:10.1007/s11104-008-9801-3

    Article  CAS  Google Scholar 

  • Faucon MP, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18. doi:10.5091/plecevo.2010.411

    Article  Google Scholar 

  • Faucon M-P, Parmentier I, Colinet G, Mahy G, Ngongo Luhembwe M, Meerts P (2011a) May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restor Ecol 19:333–343. doi:10.1111/j.1526-100X.2009.00585.x

    Article  Google Scholar 

  • Faucon MP, Colinet G, Jitaru P, Verbruggen N, Shutcha M, Mahy G, Meerts P, Pourret O (2011b) Relation between cobalt fractionation and its accumulation in metallophytes from South of Central Africa. Mineral Mag 75:832

    Google Scholar 

  • Faucon M-P, Chipeng F, Verbruggen N, Mahy G, Colinet G, Shutcha M, Pourret O, Meerts P (2012) Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ Exp Bot 84:11–16. doi:10.1016/j.envexpbot.2012.04.012

    Article  CAS  Google Scholar 

  • Francois A (1973) L’extrémité occidentale de l’Arc Cuprifère shabien. Gécamines, Likasi (Zaïre)

    Google Scholar 

  • Gough L, Grace JB (1999) Effects of environmental change on plant species density: comparing predictions with experiments. Ecology 80:882–890. doi:10.1890/0012-9658(1999)080[0882:EOECOP]2.0.CO;2

    Article  Google Scholar 

  • Harrison S (1997) How natural habitat patchiness affects the distribution of diversity in Californian serpentine chaparral. Ecology 78:1898–1906. doi:10.1890/0012-9658(1997)078[1898:HNHPAT]2.0.CO;2

    Article  Google Scholar 

  • Harrison S (1999) Local and regional diversity in a patchy landscape: native, alien, and endemic herbs on serpentine. Ecology 80:70–80

    Article  Google Scholar 

  • ICMM (2006) Good practice guidance for mining and biodiversity. ICMM, London

    Google Scholar 

  • Jacobi CM, do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodivers Conserv 16:2185–2200. doi:10.1007/s10531-007-9156-8

    Article  Google Scholar 

  • Kabala C, Singh RR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492

    Article  PubMed  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton, FL, USA

  • Kalusova V, Le Duc MG, Gilbert JC, Lawson CS, Gowing DJG, Marrs RH (2009) Determining the important environmental variables controlling plant species community composition in mesotrophic grasslands in Great Britain. Appl Veg Sci 12:459–471

    Article  Google Scholar 

  • Kew Royal Botanical Gardens (1952–2008) Flora of tropical East Africa. In: Polhill RM (ed). Royal Boanic Gardens, Kew, UK

  • Kirmer A, Tischew S, Ozinga WA, Von Lampe M, Baasch A, Van Groenendael JM (2008) Importance of regional species pools and functional traits in colonization processes: predicting re-colonization after large-scale destruction of ecosystems. J Appl Ecol 45:1523–1530. doi:10.1111/j.1365-2664.2008.01529.x

    Article  Google Scholar 

  • Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. University of California Press, Berkeley

    Google Scholar 

  • Kruskal JB (1964a) Multidimensional scaling by optimizing goodness of fit to a non metric hypothesis. Psychometrika 29:1–27

    Article  Google Scholar 

  • Kruskal JB (1964b) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Lakanen E, Erviö R (1971) A comparaison of eight exctractants for the determination of plant available micronutrients in soils. Acta Agral Fenn 123:223–232

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Leteinturier B (2002) Evaluation du potentiel phytocénotique des gisements cuprifères d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l’activité minière. Faculté des Sciences Agronomiques de Gembloux, Gembloux

    Google Scholar 

  • Li Z, McLaren RG, Metherell AK (2001) Cobalt and manganese relationships in New Zealand soils. N Z J Agric Res 44:191–200

    Article  CAS  Google Scholar 

  • Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. N Z J Agric Res 47:33–43

    Article  CAS  Google Scholar 

  • Malaisse F (1995) Copper and vegetation in Shaba (Zaire). Bulletin des Seances Academie Royale des Sciences d’Outre-Mer 40:561–580

    Google Scholar 

  • Malaisse F, Colonval-Elenkov E, Brooks RR (1983) The impact of copper and cobalt orebodies upon the evolution of some plant species from Upper Shaba, Zaïre. Plant Syst Evol 142:207–221. doi:10.1007/bf00985899

    Article  Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a dataset. Psychometrika 50:159–179

    Article  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaire. Plant Soil 53:535–539

    Article  CAS  Google Scholar 

  • O’Dell RE, James JJ, Richards JH (2006) Congeneric serpentine and nonserpentine shrubs differ more in leaf Ca:Mg than in tolerance of low N, low P, or heavy metals. Plant Soil 280:49–64. doi:10.1007/s11104-005-3502-y

    Article  Google Scholar 

  • Oksanen JF (2010) Multivariate analysis of ecological communities in R: vegan tutorial

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: Community Ecology Package. 1.17-9 edn

  • Párraga-Aguado I, González-Alcaraz MN, Álvarez-Rogel J, Jiménez-Cárceles FJ, Conesa HM (2013) The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings. Environ Pollut 176:134–143. doi:10.1016/j.envpol.2013.01.023

    Article  PubMed  Google Scholar 

  • Proctor J (1971) The plant ecology of serpentine. II. Plant response to serpentine soils. J Ecol 59:397–410

    Article  Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366

    Article  Google Scholar 

  • Robinson BH, Brooks RR, Clothier BE (1999) Soil amendments affecting nickel and cobalt uptake by Berkheya coddii: potential use for phytomining and phytoremediation. Ann Bot 84:689–694. doi:10.1006/anbo.1999.0970

    Article  CAS  Google Scholar 

  • Saad L, Parmentier I, Colinet G, Malaisse F, Faucon M-P, Meerts P, Mahy G (2012) Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20:405–415. doi:10.1111/j.1526-100X.2011.00786.x

    Article  Google Scholar 

  • Shepard RN (1962a) The analysis of proximities: multidimensional scaling with an unknown distance function I. Psychometrika 27:125–139

    Article  Google Scholar 

  • Shepard RN (1962b) The analysis of proximities: multidimensional scaling with an unknown distance function II. Psychometrika 27:219–246

    Article  Google Scholar 

  • Shutcha MN, Mubemba MM, Faucon M-P, Luhembwe MN, Visser M, Colinet G, Meerts P (2010) Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments. Int J Phytoremediat 12:616–632

    Article  CAS  Google Scholar 

  • Springer U, Klee J (1954) Prüfung der Leistungsfähigkeit von einigen wichtigeren Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsäure sowie Vorschlag einer neuen Schnellmethode. Z Pflanzenernähr Düngung Bodenkd 64:1–26

    Article  CAS  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • ter Braak CJF (1988) Partial canonical correspondence analysis. In: Bock HH (ed) Classification and related methods of data analysis. North-Holland, Amsterdam, NL

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA

  • Tichy L, Chytry M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818

    Google Scholar 

  • Tropek R, Kadlec T, Karesova P, Spitzer L, Kocarek P, Malenovsky I, Banar P, Tuf IH, Hejda M, Konvicka M (2010) Spontaneous succession in limestone quarries as an effective restoration tool for endangered arthropods and plants. J Appl Ecol 47:139–147. doi:10.1111/j.1365-2664.2009.01746.x

    Article  Google Scholar 

  • Tsiripidis I, Papaioannou A, Sapounidis V, Bergmeier E (2010) Approaching the serpentine factor at a local scale-a study in an ultramafic area in northern Greece. Plant Soil 329:35–50. doi:10.1007/s11104-009-0132-9

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Baker AJM (2002) Mining, metallophytes and land reclamation. Min Environ Manag 10:11–16

    Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

  • Whittaker RH (1954) The ecology of serpentine soils. Ecology 35:258–288

    Article  Google Scholar 

  • Wild H, Bradshaw AD (1977) The evolutionary effects of metalliferous and other anomalous soils in South Central Africa. Evolution 31:282–293

    Article  Google Scholar 

  • Wolf AT, Harrison SP, Hamrick JL (2000) Influence of habitat patchiness on genetic diversity and spatial structure of a serpentine endemic plant. Conserv Biol 14:454–463

    Article  Google Scholar 

Download references

Acknowledgments

Tenke Fungurume Mining S.a.r.l. provided financial and logistic support to this study. Mr. Emile Kisimba helped with plant identification. Both travels realized for the present work have been made possible thanks to the financial intervention of the Conseil interuniversitaire de la Communauté française de Belgique-Commission Universitaire pour le Développement (CIUF-CUD). This work is part of the research project 2.4.582.09F funded by the FRS-FNRS and of the “Projet interuniversitaire ciblé” (Project REMEDLU) funded by the CUD. J.P. Bizoux is a postdoctoral researcher of the Belgian Fund for Scientific Research (FRS-FNRS). The authors are grateful to Emile Kisimba, Francois Malaisse and Peter Goldblatt for determinations. We are grateful to Dr. Robert Mills for language revision and relevant comments on the manuscript. We would also like to thank the reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégory Mahy.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Séleck, M., Bizoux, JP., Colinet, G. et al. Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373, 455–469 (2013). https://doi.org/10.1007/s11104-013-1819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1819-5

Keywords

Navigation