Skip to main content
Log in

Root growth promotion by humic acids from composted and non-composted urban organic wastes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Besides general effect of organic residues on soil quality and plant crop, hormonal direct effect on plant growth by extracted humic acids of organic materials is interesting and profitable theme. In the present work, we studied on direct interaction between humic acid and root growth, depending on different origin of organic materials.

Methods

All extracted humic acids of four organic materials (sewage sludge, compost sewage sludge, municipal solid waste, compost municipal solid waste) were characterized chemically by elemental analyses, ion pair chromatography (ICP), size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance (13C-CPMAS-NMR) and quantification of IAA. Later, different morphological effects on maize (principal root growth, lateral root growth, root area, root mitosic site, root dry weight and H+-ATPase activity of plasma membrane) were analyzed.

Results

All humic acids samples promoted root growth and proton pump activity in maize vesicles, especially those composted samples, which contained more carboxylic groups and had a more hydrophobic character, produced preferentially morphological and biochemical effects.

Conclusion

The conformational dynamics of humic hydrophobic associations in the rhizosphere may release auxin-like plant growth promoters and enhance plant biochemical activities. These organic wastes represent a renewable source of humic acid for use as plant root promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adani F, Genevini P, Zacchero P, Zocchi G (1998) The effect of commercial humic acid on tomato plant growth and mineral nutrition. J Plant Nutr 21:561–575

    Article  CAS  Google Scholar 

  • Aguirre E, Leménager D, Bacaicoa E, Fuentes M, Baigorri R, Zamarreño AM, García Mina JM (2009) The root application of a purified leonardite humic acid modifies that transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiol Biochem 47:215–223

    Article  PubMed  CAS  Google Scholar 

  • Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinised tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  PubMed  CAS  Google Scholar 

  • Bidegain RA, Kaemmerer M, Guiresse M, Hafidi M, Rey F, Morard P, Revel JC (2000) Effects of humic substances from composted or chemically decomposed poplar sawdust on mineral nutrition of ryegrass. J Agric Sci 134:259–267

    Article  Google Scholar 

  • Bottomley WB (1917) Some effects of organic growth-promotion substances (auximones) on the growth of Lemma minor in mineral cultural solutions. Proc R Soc Lon B Biol 89:481–505

    Article  CAS  Google Scholar 

  • Bouma TJ, Nilsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196

    Article  CAS  Google Scholar 

  • Campitelli P, Ceppi S (2008) Chemical, physical and biological compost and vermicompost characterization: a chemometric study. Chemometr Intell Lab 90:64–71

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  PubMed  CAS  Google Scholar 

  • Canellas LP, Zandonadi DB, Olivares FL, Façanha AR (2006) Efeitos fisiológicos de substâncias húmicas – o estímulo as H+-ATPases. In: Fernandes MS (ed) Nutrição Mineral de Plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 175–200

    Google Scholar 

  • Canellas LP, Zandonadi DB, Busato JG, Baldotto MA, Simes ML, Martin-Neto L, Faanha AR, Spaccini R, Piccolo A (2008) Bioactivity and chemical characteristics of humic acids from tropical soils sequence. Soil Sci 173:624–637

    Article  CAS  Google Scholar 

  • Canellas LP, Spaccini R, Piccolo A, Dobbss LB, Okorokova-Façanha AL, Santos GDA, Olivares FL, Façanha AR (2009) Relationships between chemical characteristics and root gowth promotion of humic acids isolated from Brazilian oxisols. Soil Sci 174:611–620

    Article  CAS  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Façanha AR (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78:457–466

    Article  PubMed  CAS  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  PubMed  CAS  Google Scholar 

  • Chefetz B, Hatcher PG, Hadar Y, Chen Y (1996) Chemical and biological characterization of organic matter during composting of municipal solid waste. J Environ Qual 25:776–785

    Article  CAS  Google Scholar 

  • Chen Y, Clapp CE, Magen H (2004) Mechanisms of plant growth stimulation by humic substances: the role of organo iron complexes. Soil Sci Plant Nutr 50:1089–1095

    Article  CAS  Google Scholar 

  • Dobbss LB, Canellas LP, Olivares FL, Aguiar NO, Peres LEP, Azevedo M, Spaccini R, Piccolo A, Façanha AR (2010) Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J Agric Food Chem 58:3681–3688

    Article  PubMed  CAS  Google Scholar 

  • Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr 950:21–29

    Article  Google Scholar 

  • Eyheraguibel B, Silvestre J, Morard P (2008) Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour Technol 99:4206–4212

    Article  PubMed  CAS  Google Scholar 

  • González-Vila FJ, Almendros G, Madrid F (1999) Molecular alterations of organic fractions from urban waste in the course of composting and their further transformations in amended soils. Sci Total Environ 236:215–229

    Article  Google Scholar 

  • Guminski S (1968) Present-day views on physiological effects induced in plant organism by humic compounds. Sov Soil Sci+ 1250–1256

    Google Scholar 

  • Hager A, Debus G, Edel HG, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185:527–537

    Article  CAS  Google Scholar 

  • Hatcher PG, Nanny MA, Minard RD, Dible SD, Carson DM (1995) Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Org Geochem 23:881–888

    Article  CAS  Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1990) Characterization of humic substances formed during the composting of organic matter. Soil Sci Soc Am J 54:1316–1323

    Article  CAS  Google Scholar 

  • Jahn T, Baluska F, Michalke W, Harper JF, Volkmann D (1998) A membrane H+-ATPase in the root apex: evidence for strong expression in xylem parenchyma and asymmetric localization within cortical and epidermal cells. Physiol Plant 104:311–316

    Article  CAS  Google Scholar 

  • Khaled H, Fawy HA (2011) Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil Water Res 6:21–29

    CAS  Google Scholar 

  • Kogel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  CAS  Google Scholar 

  • Magdoff F, Weil RR (2004) Soil organic matter in sustainable agriculture. CRC Press, Upper Saddle River

    Book  Google Scholar 

  • Moreno JL, Jindo K, Hernández T, García C (2007) Total and immobilized enzymatic activity of organic materials before and after composting. Compost Sci Util 15:93–100

    CAS  Google Scholar 

  • Morsomme PM, Boutry M (2000) The plant plasma-membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta 1465:1–16

    Article  PubMed  CAS  Google Scholar 

  • Muscolo A, Pannuccio MR, Abenavoli MR, Concheri G, Nardi S (1996) Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase, and phosphoenolpyruvate carboxylase in Daucus carota α II cells. Biol Fertil Soils 22:83–88

    Article  CAS  Google Scholar 

  • Muscolo A, Cutrupi S, Nardi S (1998) IAA detection in humic substances. Soil Biol Biochem 30:1199–1201

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S (2007a) The auxin-like acitivity of humic substances is related to membran interatcitons in carrot cell cultures. J Chem Ecol 33:115–129

    Article  PubMed  CAS  Google Scholar 

  • Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S (2007b) Biological activity of humic substances is related to ther chemical structure. Soil Sci Soc Am J 71:75–85

    Article  CAS  Google Scholar 

  • Napier MR (2001) Models of auxin binding. J Plant Growth Regul 20:244–254

    Article  CAS  Google Scholar 

  • Napier MR (2004) Plant hormone binding sites. Ann Bot (London) 93:227–233

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances in higher plants. Soil Biol Biochem 34:1527–1537

    Article  CAS  Google Scholar 

  • O’Donnell RW (1973) The auxin-like effects of humic preparations from leonardite. Soil Sci 116:106–112

    Article  Google Scholar 

  • Piccolo A, Conte P, Cozzolino A (2001) Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Sci 166:174–185

    Google Scholar 

  • Pinton R, Varanini Z, Vizzotto G, Maggioni A (1992) Soil humic substances affect transport properties of tonoplast vesicles isolated from oat roots. Plant Soil 142:203–210

    Article  CAS  Google Scholar 

  • Pinton R, Cesco S, Iacolettig G, Astolfi S, Varanini Z (1999) Modulation of NO 3 uptake by water-extractable humic substances: involvement of root plasma membrane H+-ATPase. Plant Soil 215:155–161

    Article  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2007) The rhizosphere: biochemistry and organic substances at the soil–plant interface, 2nd edn. CRC Press, Madison, p 447

    Book  Google Scholar 

  • Plaza C, Nogales R, Senesi N, Benitez E, Polo A (2008) Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresour Technol 99:5085–5089

    Article  PubMed  CAS  Google Scholar 

  • Provenzano MR, Oliveira SC, Silva MRS, Senesi N (2001) Assessment of maturity degree of composts from domestic solid wastes by fluorescence and fourier transform infrared spectroscopies. J Agric Food Chem 49:5874–5879

    Article  PubMed  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813

    Article  PubMed  CAS  Google Scholar 

  • Rubery PH (1981) Auxin receptors. Annu Rev Plant Physiol 32:569–596

    Article  CAS  Google Scholar 

  • Sánchez-Monedero MA, Cegarra J, García D, Roig A, Paredes C (2002a) Effects of HCl–HF purification treatment on chemical composition and structure of humic acids. Eur J Soil Sci 53:375–381

    Article  Google Scholar 

  • Sánchez-Monedero MA, Cegarra J, García D, Roig A (2002b) Chemical and structural evolution of humic acids during organic waste composting. Biodegradation 13:361–371

    Article  PubMed  Google Scholar 

  • Spaccini R, Piccolo A, Haberhauer G, Gerzabek MH (2000) Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra. Eur J Soil Sci 51:583–594

    Google Scholar 

  • Spaccini R, Piccolo A (2009) Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biol Biochem 41:1164-1172

    Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions (2nd edn). Wiley

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    Article  PubMed  CAS  Google Scholar 

  • Tan KH, Nopamornbodi V (1979) Effect of different levels of humic acids on nutrient content and growth of corn (Zea Mays L.). Plant Soil 51:283–287

    Article  CAS  Google Scholar 

  • Trevisan S, Pizzeghello D, Ruperti B, Francioso O, Sassi A, Palme K, Quaggiotti S, Nardi S (2009) Humic substances induce lateral root formation and expression of the early auxin-responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol 12:604–614

    Google Scholar 

  • Vaughan D, Malcolm RE (1985) Influence of humic substances on growth and physiological process. In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Kluwer, Dordrecht, pp 77–108

    Chapter  Google Scholar 

  • Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by CNPq (National Council for Scientific and Technological Development, Brazil), FAPERJ (Rio de Janeiro State Agency for Research) and the Spanish SENECA foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Jindo.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jindo, K., Martim, S.A., Navarro, E.C. et al. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 353, 209–220 (2012). https://doi.org/10.1007/s11104-011-1024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-1024-3

Keywords

Navigation