Skip to main content
Log in

Plant nitrogen and phosphorus limitation in 98 North American grassland soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The availability of nutrients is a critical determinant of ecological dynamics in grasslands, but the relationships between soil resource availability and nutrient limitation across ecosystems are not clear. To better understand how soil nutrient availability determines nutrient limitation in vegetation, we grew the same species of grass (Schizachyrium scoparium) in 98 North American grassland soils and fertilized them factorially with nitrogen (N) and phosphorus (P). On average adding N, P, and the two nutrients together increased biomass relative to unfertilized plants by 81%, 22%, and 131%, respectively. Plants grown on low-P soils were not primarily limited by P. Instead, these plants were colimited by N and P, while plants grown on high-P soils were primarily limited by N and only secondarily limited by P. Limitation was not predicted by total soil N. The preponderance of colimitation between N and P on low-P soils suggests that low P availability alters the N cycle to constrain supplies to plants such that N and P are made available in proportion to their demand by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MAP:

Mean annual precipitation

MAT:

Mean annual temperature

RCI:

Relative colimitation index

References

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031

    Article  CAS  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157

    Article  Google Scholar 

  • Chapin FS III, Vitousek PM, Van Cleve K (1986) The nature of nutrient limitation in plant communities. Am Nat 127:48–58

    Article  Google Scholar 

  • Cheng WX, Johnson DW, Fu SL (2003) Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization. Soil Sci Soc Am J 67:1418–1427

    Article  CAS  Google Scholar 

  • Cook GD (1994) The fate of nutrients during fires in a tropical savanna. Aust J Ecol 19:359–365

    Article  Google Scholar 

  • Craine J (2009) Resource strategies of wild plants. Princeton University Press, Princeton

    Google Scholar 

  • Craine JM, Tilman DG, Wedin DA, Reich PB, Tjoelker MJ, Knops JMH (2002) Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Funct Ecol 16:563–574

    Article  Google Scholar 

  • Craine JM, Wedin DA, Chapin FS III, Reich PB (2003) Development of grassland root systems and their effects on ecosystem properties. Plant Soil 250:39–47

    Article  CAS  Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  • Craine JM, Morrow C, Stock WD (2008) Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol 179:829–836

    Article  CAS  PubMed  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992

    Article  CAS  PubMed  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invations by exotic grasses, the grass fire cycle, and global change. Annu Rev Ecol Syst 23:63–87

    Google Scholar 

  • Elliott ET, Heil JW, Kelly EF, Monger HC (1999) Soil structural and other physical properties. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford, pp 74–88

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Gleeson SK, Tilman D (1992) Plant allocation and the multiple limitation hypothesis. Am Nat 139:1322–1343

    Article  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Hall SJ, Matson PA (2003) Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecol Monogr 73:107–129

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lee TD, Tjoelker MG, Ellsworth DS, Reich PB (2001) Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytol 150:405–418

    Article  CAS  Google Scholar 

  • Li DJ, Wang XM, Sheng GY, Mo JM, Fu JM (2008) Soil nitric oxide emissions after nitrogen and phosphorus additions in two subtropical humid forests. J Geophys Res-Atmos 113:8

    Google Scholar 

  • Liebig J (1855) Principles of agricultural chemistry. Walton and Maberly, London

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Paul EA, Harris D, Klug MJ, Ruess RW (1999) The determination of microbial biomass. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, Oxford

    Google Scholar 

  • Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C (2008) Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc Natl Acad Sci USA 105:1971–1976

    Article  CAS  PubMed  Google Scholar 

  • Rastetter EB, Shaver GR (1992) A model of multiple-element limitation for acclimating vegetation. Ecology 73:1157–1174

    Article  Google Scholar 

  • Reynolds HL, D’Antonio C (1996) The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant Soil 185:75–97

    Article  CAS  Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N (2005) Determinants of woody cover in African savannas. Nature 438:846–849

    Article  CAS  PubMed  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Stout WL (1992) Water-use efficiency of grasses as affected by soil, nitrogen, and temperature. Soil Sci Soc Am J 56:897–902

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article  Google Scholar 

  • Trollope WSW (1993) Fire regime of the Kruger National Park for the period 1980–1992. Koedoe 36:45–52

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant. O & B Books, Corvallis, p 528

    Google Scholar 

  • Vitousek P (2004) Nutrient cycling and limitation. Princeton University Press, Princeton, p 223

    Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ben Turner for advice on measuring P availability, Andrew Elmore for providing climate data and Ben Houlton for comments on limitation. Many individuals volunteered their time in providing soils for the experiment, especially The Nature Conservancy. JMC was funded by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Mitchell Craine.

Additional information

Responsible Editor: Michael Denis Cramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craine, J.M., Jackson, R.D. Plant nitrogen and phosphorus limitation in 98 North American grassland soils. Plant Soil 334, 73–84 (2010). https://doi.org/10.1007/s11104-009-0237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0237-1

Keywords

Navigation