Skip to main content
Log in

Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Lateral roots are crucial for the plasticity of root responses to environmental conditions in soil. The bacterivorous microfauna has been shown to increase root branching and to foster auxin producing soil bacteria. However, information on modifications of plant internal auxin content by soil bacteria and bacterivores is missing. Therefore, the effects of a rhizosphere bacterial community and a common soil amoeba (Acanthamoeba castellanii) on root branching and on auxin (indole-3-acetic acid) metabolism in Lepidium sativum and Arabidopsis thaliana were investigated. In a first experimental series, bacteria increased conjugated auxin concentrations in L. sativum shoots, but did not alter free bioactive auxin content nor root branching. In contrast, in presence of soil bacteria plus amoebae free auxin concentrations in shoots and root branching increased, demonstrating that effects of bacteria on auxin metabolism in plants were strongly modified by the bacterivorous amoebae. In a second experiment, A. thaliana reporter plants for auxin (DR5) and cytokinin (ARR5) responded similarly with increased root branching in the presence of amoebae. Surprisingly, in reporter plants cytokinin but not auxin responses were detectable, accompanied by higher soil nitrate concentrations in the presence of amoebae. Likely, increased nitrate concentrations in the rhizosphere led to an accumulation of cytokinin and interactions with free auxin in plants and finally to increased root growth in the presence of amoebae. Altogether, the results show that mutual control mechanisms exist between plant hormone metabolism and microbial signalling, and that effects on hormonal concentrations of plants by free-living bacteria are strongly influenced by bacterial grazers like amoebae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alphei J, Bonkowski M, Scheu S (1996) Protozoa, nematoda and lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106:111–126

    Google Scholar 

  • Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic-acid production. Res Microbiol 144:69–75

    Article  CAS  PubMed  Google Scholar 

  • Barbieri P, Zanelli T, Galli E, Zanetti G (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen-fixation and indole-3-acetic-acid production. FEMS Microbiol Lett 36:87–90

    Article  CAS  Google Scholar 

  • Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  CAS  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Article  Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709–1715

    Article  CAS  Google Scholar 

  • Bonkowski M, Griffiths B, Scrimgeour C (2000) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol 14:37–53

    Article  Google Scholar 

  • Bonkowski M, Geoghegan IE, Birch ANE, Griffiths BS (2001) Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos 95:441–450

    Article  Google Scholar 

  • Campanella J, Ludwig-Müller J, Bakllamaia V, Sharma V, Cartier A (2003) ILR1 and sILR1 IAA amidohydrolase homologs differ in expression pattern and substrate specificity. Plant Growth Regul 41:215–223

    Article  CAS  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inz D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett M (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Celenza J, Grisafi P, Fink G (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    Article  CAS  PubMed  Google Scholar 

  • Chen K-H, Miller AN, Patterson GW, Cohen JD (1988) A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:82–825

    Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17:181–187

    Article  CAS  Google Scholar 

  • Coenen C, Lomax T (1997) Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends in Plant Science 2:351–356

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD (1984) Convenient apparatus for the generation of small amounts of diazomethane. Journal of Chromatography A 303:193–196

    Article  CAS  Google Scholar 

  • Cohen JD, Baldi BG, Slovin JP (1986) 13C6 [benzene ring]-indole-3-acetic acid: a new internal standard for quantitative mass-spectral analysis of indole-3-acetic-acid in plants. Plant Physiol 80:14–19

    Article  CAS  PubMed  Google Scholar 

  • D’Agostino IB, Deruère J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    Article  PubMed  Google Scholar 

  • Deruère J, Kieber JJ (2002) Molecular mechanisms of cytokinin signaling. J Plant Growth Regul 21:32–39

    Article  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre J, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Austr J Plant Physiol 28:871–879

    Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Frankenberger W, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York, p 503

    Google Scholar 

  • Griffiths BS (1989) Enhanced nitrification in the presence of bacteriophagous protozoa. Soil Biol Biochem 21:1045–1051

    Article  CAS  Google Scholar 

  • Griffiths BS, Bonkowski M, Dobson G, Caul S (1999) Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43:297–304

    CAS  Google Scholar 

  • Griffiths B, Christensen S, Bonkowski M (2007) Microfaunal interactions in the rhizosphere, how nematodes and protozoa link above- and belowground processes. In: Cardon Z, Whitbeck J (eds) The rhizosphere—an ecological perspective. Elsevier, Amsterdam, pp 57–71

    Google Scholar 

  • Henry F, Nguyen C, Paterson E, Sim A, Robin C (2005) How does nitrogen availability alter rhizodeposition in Lolium multiflorum Lam. during vegetative growth? Plant Soil 269:181–191

    Article  CAS  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Article  CAS  PubMed  Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411

    Article  CAS  PubMed  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth: non-nutritional effects and interaction with mycorrhizae. Biol Fertil Soils 20:263–269

    Article  Google Scholar 

  • Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38:1665–1672

    Article  CAS  Google Scholar 

  • Kuikman PJ, Jansen AG, van Veen JA (1991) 15N-nitrogen mineralization from bacteria by protozoan grazing at different soil moisture regimes. Soil Biol Biochem 23:193–200

    Article  CAS  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  CAS  PubMed  Google Scholar 

  • Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792

    Article  CAS  PubMed  Google Scholar 

  • Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Lucas M, Godin C, Jay-Allemand C, Laplaze L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE (2005a) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE (2005b) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Eviron 28:67–77

    Article  CAS  Google Scholar 

  • Malamy J, Benfey P (1997a) Lateral root formation in Arabidopsis thaliana. Plant Physiol 114:277–277

    Google Scholar 

  • Malamy J, Benfey P (1997b) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci 2:390–396

    Article  Google Scholar 

  • Mao X, Hu F, Griffiths B, Li H (2006) Bacterial-feeding nematodes enhance root growth of tomato seedlings. Soil Biol Biochem 38:1615–1622

    Article  CAS  Google Scholar 

  • Mao X, Hu F, Griffiths B, Chen X, Liu M, Li H (2007) Do bacterial-feeding nematodes stimulate root proliferation through hormonal effects? Soil Biol Biochem 39:1816–1819

    Article  CAS  Google Scholar 

  • Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  CAS  PubMed  Google Scholar 

  • Mulkey T, Kuzmanoff K, Evans M (1982) Promotion of growth and hydrogen ion efflux by auxin in roots of maize pretreated with ethylene biosynthesis inhibitors. Plant Physiol 70:186–188

    Article  CAS  PubMed  Google Scholar 

  • Page FC (1976) An illustrated key to freshwater and soil amoebae. Freshwater Biological Association 34, p 11

    Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Europ J Soil Sci 54:741–750

    Article  Google Scholar 

  • Patten C, Glick B (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten C, Glick B (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  Google Scholar 

  • Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Rønn R, McCaig A, Griffiths B, Prosser J (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68:6094–6105

    Article  PubMed  Google Scholar 

  • Rosenberg K, Krome K, Bertaux J, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME Journal 3:675–684

    Article  CAS  PubMed  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H (2003) Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. J Plant Res 116:253–257

    Article  CAS  PubMed  Google Scholar 

  • Samuelson ME, Larsson CM (1993) Nitrate regulation of zeatin riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci 93:77–84

    Article  CAS  Google Scholar 

  • Scott T (1972) Auxins and roots. Ann Rev Plant Physiol 23:235–258

    Article  CAS  Google Scholar 

  • Seidel C, Walz A, Park S, Cohen JD, Ludwig-Müller J (2006) Indole-3-acetic acid protein conjugates: novel players in auxin homeostasis. Plant Biol 8:340–345

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiol 45:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle T (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Verhagen FJM, Hagemann PEJ, Woldendorp JW, Laanbroek HJ (1994) Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization. Soil Biol Biochem 26:89–96

    Article  CAS  Google Scholar 

  • Vessey J (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Nat Am Soc 98:10487–10492

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida Cr12–2 that overproduce indoleacetic acid. Current Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Zhang H, Forde B (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The seeds of the DR5::GUS transgenic line, A. thaliana ecotype Columbia-0, were kindly provided by G. Hagen and T. J. Guilfoyle (University of North Carolina, Wilmington, USA); and seeds of ARR5::GUS transformants of A. thaliana ecotype Wassilewskija, constructed by J. J. Kieber (University of North Carolina, USA) were kindly provided by T. Schmülling (Freie Universität Berlin, Germany) and J. J Kieber. This study was part of the “Virtual Institute of Biotic Interactions” supported by the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bonkowski.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krome, K., Rosenberg, K., Dickler, C. et al. Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant Soil 328, 191–201 (2010). https://doi.org/10.1007/s11104-009-0101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0101-3

Keywords

Navigation