Skip to main content
Log in

GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant SKP1-like family proteins, components of the SCF complex E3 ligases, are involved in the regulation of plant development and stress responses. Little is known about the precise function of SKP genes in plant responses to environmental stresses. GsSKP21 was initially identified as a potential stress-responsive gene based on the transcriptome sequencing of Glycine soja. In this study, we found that GsSKP21 protein contains highly conserved SKP domains in its N terminus and an extra unidentified domain in its C terminus. The transcript abundance of GsSKP21, detected by quantitative real-time PCR, was induced under the treatment of alkali and salt stresses. Overexpression of GsSKP21 in Arabidopsis dramatically increased plant tolerance to alkali stress. Furthermore, we found that overexpression of GsSKP21 resulted in decreased ABA sensitivity during both the seed germination and early seedling growth stages. GsSKP21 mediated ABA signaling by altering the expression levels of the ABA signaling-related and ABA-induced genes. We also investigated the tissue expression specificity and subcellular localization of GsSKP21. These results suggest that GsSKP21 is important for plant tolerance to alkali stress and plays a critical regulatory role in the ABA-mediated stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao RP, Salchert K, Bako L, Okresz L, Szabados L, Muranaka T, Machida Y, Schell J, Koncz C (1999) Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc Natl Acad Sci USA 96:5322–5327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark R, Zeto S (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Connelly C, Hieter P (1996) Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86:275–285

    Article  CAS  PubMed  Google Scholar 

  • Dezfulian MH, Soulliere DM, Dhaliwal RK, Sareen M, Crosby WL (2012) The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development. PLoS ONE 7:e50984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farrás R, Ferrando A, Jásik J, Kleinow T, Ökrész L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C (2001) SKP1–SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 20:2742–2756

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Zhu Y, Lv D, Dong T, Wang W, Tan S, Liu C, Zou P (2009) Research on responses of wild soybean to alkaline stress. Pratacultural Sci 26:47–52

    CAS  Google Scholar 

  • Ge Y, Li Y, Zhu Y-M, Bai X, Lv D-K, Guo D, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10:153

    Article  PubMed Central  PubMed  Google Scholar 

  • Gong B, Wen D, VandenLangenberg K, Wei M, Yang F, Shi Q, Wang X (2013) Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci Hortic 157:1–12

    Article  CAS  Google Scholar 

  • Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartung W, Schraut D, Jiang F (2005) Physiology of abscisic acid (ABA) in roots under stress—a review of the relationship between root ABA and radial water and ABA flows. Crop Pasture Sci 56:1253–1259

    Article  CAS  Google Scholar 

  • Hotton SK, Callis J (2008) Regulation of cullin RING ligases

  • Hu D-L, Chen Q-Z, Zhang C-J, Wang Y, Zhang B-J, Tang C-M (2013) Identification of cotton SKP1-like gene GhSKP1 and its function in seed germination and taproot growth in tobacco. Can J Plant Sci 93:817–825

    Article  CAS  Google Scholar 

  • Ji W, Li Y, Li J, Dai CH, Wang X, Bai X, Cai H, Yang L, Zhu YM (2006) Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja. BMC Plant Biol 6(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  • Jin H, Plaha P, Park J, Hong C, Lee I, Yang Z, Jiang G, Kwak S, Liu S, Lee J (2006) Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci 170:1081–1086

    Article  CAS  Google Scholar 

  • Komatsu K, Nishikawa Y, Ohtsuka T, Taji T, Quatrano RS, Tanaka S, Sakata Y (2009) Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens. Plant Mol Biol 70:327–340

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Leebens-Mack J, Ni W, Ma H (2004) Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications. Mol Biol Evol 21:117–128

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, DePamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 31:201–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell Online 16:1378–1391

    Article  CAS  Google Scholar 

  • Li C, Liang Y, Chen C, Li J, Xu Y, Xu Z, Ma H, Chong K (2006) Cloning and expression analysis of TSK1, a wheat SKP1 homologue, and functional comparison with Arabidopsis ASK1 in male meiosis and auxin signalling. Funct Plant Biol 33:381–390

    Article  CAS  Google Scholar 

  • Li C, Liu Z, Zhang Q, Wang R, Xiao L, Ma H, Chong K, Xu Y (2012) SKP1 is involved in abscisic acid signalling to regulate seed germination, stomatal opening and root growth in Arabidopsis thaliana. Plant Cell Environ 35:952–965

    Article  CAS  PubMed  Google Scholar 

  • Marrocco K, Lecureuil A, Nicolas P, Guerche P (2003) The Arabidopsis SKP1-like genes present a spectrum of expression profiles. Plant Mol Biol 52:715–727

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Ogura Y, Ihara N, Komatsu A, Tokioka Y, Nishioka M, Takase T, Kiyosue T (2008) Gene expression, localization, and protein–protein interaction of Arabidopsis SKP1-like (ASK) 20A and 20B. Plant Sci 174:485–495

    Article  CAS  Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Tsz-fung FC (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50:1196–1212

    Article  CAS  PubMed  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S-Y, Marquez JA, Cutler SR, Rodriguez PL (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60:575–588

    Article  CAS  PubMed  Google Scholar 

  • Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408:381–386

    Article  CAS  PubMed  Google Scholar 

  • Seo K-I, Song E, Chung S, Lee J-H (2012) Roles of various cullin-RING E3 ligases involved in hormonal and stress responses in plants. J Plant Biol 55:421–428

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Shu YJ, Li Y, Zhu ZL, Bai X, Cai H, Ji W, Guo DJ, Zhu YM (2011) SNPs discovery and CAPS marker conversion in soybean. Mol Biol Rep 38:1841–1846

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Seki K, Miyazaki T, Ishihama Y (2009) The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ 7:259–270

    Article  Google Scholar 

  • Wang M-M, Liang Z-W, Wang Z-C, Huang L-H, Ma H-Y, Liu M, Gu X-Y (2010) Effect of irrigation water depth on rice growth and yield in a saline-sodic soil in Songnen plain, China. J Food Agric Environ 8:530–534

    Google Scholar 

  • Weber H, Chetelat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37:877–888

    Article  CAS  PubMed  Google Scholar 

  • Willems E, Leyns L, Vandesompele J (2008) Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem 379:127–129

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Chong J, Li C, Kim C, Shi D, Wang D (2007) Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil 294:263–276

    Article  CAS  Google Scholar 

  • Yang C, Jianaer A, Li C, Shi D, Wang D (2008a) Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica 46:273–278

    Article  CAS  Google Scholar 

  • Yang C, Shi D, Wang D (2008b) Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul 56:179–190

    Article  CAS  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J-K, Hasegawa PM, Bressan RA, Bohnert HJ (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    Article  CAS  Google Scholar 

  • Zhu D, Bai X, Chen C, Chen Q, Cai H, Li Y, Ji W, Zhai H, Lv D, Luo X (2011) GsTIFY10, a novel positive regulator of plant tolerance to bicarbonate stress and a repressor of jasmonate signaling. Plant Mol Biol 77:285–297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31171578), the "863" project (2008AA10Z153), Heilongjiang Provincial Higher School Science and Technology Innovation Team Building Program (2011TD005), and National Basic Scientific Talent Training Fund projects (J1210069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (TIFF 2971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Yu, Y., Duan, X. et al. GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity. Plant Mol Biol 87, 111–124 (2015). https://doi.org/10.1007/s11103-014-0264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0264-z

Keywords

Navigation