Skip to main content
Log in

Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anukul N, Abilgos Ramos R, Mehrshahi P, Castelazo AS, Parker H, Diévart A, Lanau N, Mieulet D, Tucker G, Guiderdoni E, Barrett DA, Bennett MJ (2010) Folate polyglutamylation is required for rice seed development. Rice 3:181–193

    Article  Google Scholar 

  • Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 10:582–592

    Article  Google Scholar 

  • Bailey LB (2004) Folate and vitamin B12 recommended intakes and status in the United States. Nutr Rev 62:S14–S20

    Article  PubMed  Google Scholar 

  • Basset GJ, Quinlivan EP, Ravanel S, Rébeillé F, Nichols BP, Shinozaki K, Seki M, Adams-Philips LC, Giovannoni JJ, Gregory JF III, Hanson AD (2004a) Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proc Natl Acad Sci USA 101:1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Basset GJC, Ravanel S, Quinlivan EP, White R, Giovannoni JJ, Rébeillé F, Nichols BP, Shinozaki K, Seki M, Gregory JF III, Hanson AD (2004b) Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase. Plant J 40:453–461

    Article  PubMed  CAS  Google Scholar 

  • Bekaert S, Storozhenko S, Mehrshahi P, Bennett MJ, Lambert W, Gregory JF III, Schubert K, Hugenholtz J, Van Der Straeten D, Hanson AD (2008) Folate biofortification in food plants. Trends Plant Sci 13:28–34

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Besson V, Rébeillé F, Neuburger M, Douce R, Cossins EA (1993) Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochem J 292:425–430

    PubMed  CAS  Google Scholar 

  • Blancquaert D, Storozhenko S, Loizeau K, De Steur H, De Brouwer V, Viaene J, Ravanel S, Rébeillé F, Lambert W, Van Der Straeten D (2010) Folates and folic acid: from fundamental research toward sustainable health. Crit Rev Plant Sci 29:14–35

    Article  CAS  Google Scholar 

  • Blancquaert D, Navarrete O, Storozhenko S, De Steur H, Van Daele J, Dong W, Lei C, Zhang C, Stove C, Gellynck X, Viaene J, Lambert W, Van Der Straeten D (in press) Biofortified rice to fight folate deficiency. In: Preedy V (ed) Handbook of food fortification and health: from concepts to public health applications. Springer, New York

  • Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Choi SW, Friso S (2005) Interactions between folate and aging for carcinogenesis. Clin Chem Lab Med 43:1151–1157

    Article  PubMed  CAS  Google Scholar 

  • Coleman M, Vontas JG, Hemingway J (2002) Molecular characterization of the amplified aldehyde oxidase from insecticide resistant Culex quinquefasciatus. Eur J Biochem 269:768–779

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (2001) Disruption of histidine catabolism in NEUT2 mice. Arch Biochem Biophys 392:226–232

    Article  PubMed  CAS  Google Scholar 

  • Counce PA, Keisling TC, Mitchell AJ (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Sci 40:436–443

    Article  Google Scholar 

  • De Brouwer V, Storozhenko S, Van De Steene JC, Wille SMR, Stove CP, Van Der Straeten D, Lambert WE (2008) Optimisation and validation of a liquid chromatography–tandem mass spectrometry method for folates in rice. J Chromatogr A 1215:125–132

    Article  PubMed  Google Scholar 

  • De Brouwer V, Storozhenko S, Stove CP, Van Daele J, Van Der Straeten D, Lambert WE (2010) Ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for the sensitive determination of folates in rice. J Chromatogr B 878:509–513

    Article  Google Scholar 

  • Diaz de la Garza RI, Gregory JF III, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 104:4218–4222

    Article  PubMed  CAS  Google Scholar 

  • Endres M, Ahmadi M, Kruman I, Biniszkiewicz D, Meisel A, Gertz K (2005) Folate deficiency increases postischemic brain injury. Stroke 36:321–325

    Article  PubMed  CAS  Google Scholar 

  • Facella P, Lopez L, Carbone F, Galbraith DW, Guiliano G, Perrota G (2008) Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors. PLoS ONE 3:e2798

    Article  PubMed  Google Scholar 

  • Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Garcia D, Fitz Gerald JN, Berger F (2005) Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60

    Article  PubMed  CAS  Google Scholar 

  • Geisel J (2003) Folic acid and neural tube defects in pregnancy—a review. J Perinat Neonatal Nurs 17:268–279

    Article  PubMed  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  Google Scholar 

  • Hilhorst HWM, Karssen CM (1992) Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul 11:225–238

    Article  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jiang L, Liu Y, Sun H, Han Y, Li J, Li C, Guo W, Meng H, Li S, Fan Y, Zhang C (2013) The mitochondrial folylpolyglutamate synthetase gene is required for nitrogen utilization during early seedling development in Arabidopsis. Plant Physiol 161:971–989

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Rajagopalan KV (1985) Pterins in other metabolic pathways. In: Blackley RL, Benkovic S (eds) Folates and pterins, vol 2. Wiley, New York, pp 383–399

    Google Scholar 

  • Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Structure, function, and formation of biological iron–sulfur clusters. Annu Rev Biochem 74:247–281

    Article  PubMed  CAS  Google Scholar 

  • Kaufman S, Kaufman EE (1985) Tyrosine hydroxylase. In: Blackley RL, Benkovic S (eds) Folates and pterins, vol 2. Wiley, New York, pp 251–352

    Google Scholar 

  • Krebs HA, Hems R, Tyler B (1976) Regulation of folate and methionine metabolism. Biochem J 158:341–353

    PubMed  CAS  Google Scholar 

  • Kuhn DM, Lovenberg W (1985) Tryptophan hydroxylase. In: Blackley RL, Benkovic S (eds) Folates and pterins, vol 2. Wiley, New York, pp 115–154

    Google Scholar 

  • Leydecker MT, Moureaux T, Kraepiel Y, Schnorr K, Caboche M (1995) Molybdenum cofactors mutants, specifically impaired in xanthine dehydrogenase activity and abscisic acid biosynthesis, simultaneously overexpress nitrate reductase. Plant Physiol 107:1427–1431

    PubMed  CAS  Google Scholar 

  • Li GM, Presnell SR, Gu LY (2003) Folate deficiency, mismatch repair-dependent apoptosis, and human disease. J Nutr Biochem 14:568–575

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lohse M, Nunes-Nesi A, Krüger P, Nagel A, Hannemann J, Giorgi FM, Childs L, Osorio S, Walther D, Selbig J, Sreenivasulu N, Stitt M, Fernie AR, Usadel B (2010) Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis. Plant Physiol 153:642–651

    Article  PubMed  CAS  Google Scholar 

  • Lucock MD, Daskalakis IG, Wild J, Anderson A, Schorah CJ, Lean MEJ, Levene MI (1996) The influence of dietary folate and methionine on the metabolic disposition of endotoxic homocysteine. Biochem Mol Med 59:104–111

    Article  PubMed  CAS  Google Scholar 

  • Moore JT, Gaylor JL (1969) Isolation and purification of an S-adenosylmethionine: delta 24-sterol methyltransferase from yeast. J Biol Chem 244:6334–6340

    PubMed  CAS  Google Scholar 

  • Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda T (1996) Cloning of the rice seed alpha-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley d hordein. Gene 170:223–226

    Article  PubMed  CAS  Google Scholar 

  • Navarrete O, Van Daele J, Stove C, Lambert W, Van Der Straeten D, Storozhenko S (2012) A folate independent role for cytosolic HPPK/DHPS upon stress in Arabidopsis thaliana. Phytochem 73:23–33

    Article  CAS  Google Scholar 

  • Ori N, Eshed Y, Pinto P, Paran I, Zamir D, Fluhr R (1997) TAO1, a representative of molybdenum cofactor containing hydroxylases from tomato. J Biol Chem 272:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Papakostas G, Cassiello CF, Iovieno N (2012) Folates and S-adenosylmethionine for major depressive disorder. Can J Psychiatr 57:406–413

    Google Scholar 

  • Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41:21–40

    Article  PubMed  CAS  Google Scholar 

  • Sant ME, Lyons SD, Phillips L, Christopherson RI (1991) Antifolates induce inhibition of amido phosphoribosyltransferase in leukemia cells. J Biol Chem 267:11038–11045

    Google Scholar 

  • Sarafidou T, Kahl C, Martinez-Garay I, Mangelsdorf M, Gesk S, Baker E, Kokkinaki M, Talley P, Maltby EL, French L, Harder L, Hinzmann B, Nobile C, Richkind K, Finnis M, Deloukas P, Sutherland GR, Kutsche K, Moschonas NK, Siebert R, Gecz J (2004) Folate-sensitive fragile site FRA10A is due to an expansion of a CGG repeat in a novel gene, FRA10AC1, encoding a nuclear protein. Genomics 84:69–81

    Article  PubMed  CAS  Google Scholar 

  • Scott JM, Weir DG (1996) Homocysteine and cardiovascular disease. Q J Med 89:561–563

    Article  CAS  Google Scholar 

  • Scott J, Rébeillé F, Fletcher J (2000) Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80:795–824

    Article  CAS  Google Scholar 

  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PWF, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483

    Article  PubMed  CAS  Google Scholar 

  • Smith GK, Mueller WT, Wasserman GF, Taylor WD, Benkovic SJ (1980) Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Biochemistry 19:4313–4321

    Article  PubMed  CAS  Google Scholar 

  • Sohta Y, Ohta T, Masada M (1997) Purification and some properties of GTP cyclohydrolase I from spinach leafs. Biosci Biotechnol Biochem 61:1081–1085

    Article  CAS  Google Scholar 

  • Stanger O (2004) The potential role of homocysteine in percutaneous coronary interventions (PCI): review of current evidence and plausibility of action. Cell Mol Biol 50:953–988

    PubMed  CAS  Google Scholar 

  • Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang G-F, Lambert W, Van Der Straeten D (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25:1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Sutherland GR (2003) Rare fragile sites. Cytogenet Genome Res 100:77–84

    Article  PubMed  CAS  Google Scholar 

  • Takaiwa F, Oono K, Wing D, Kato A (1991) Sequence of 3 members and expression of a new major subfamily of glutelin genes from rice. Plant Mol Biol 17:875–885

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T et al (2008) The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    PubMed  CAS  Google Scholar 

  • Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    Article  PubMed  CAS  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Vignols F, Wigger M, Garcia-Garrido JM, Grellet F, Kader J-C, Delseny M (1997) Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene 195:177–186

    Article  PubMed  CAS  Google Scholar 

  • Waller JC, Akhtar TA, Lara-Nunez L, Gregory JF III, McQuinn RP, Giovannoni JJ, Hanson AD (2010) Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol Plant 3:66–77

    Article  PubMed  CAS  Google Scholar 

  • Waller JC, Ellens KW, Alvarez S, Loizeau K, Ravanel S, Hanson AD (2012) Mitochondrial and plastidial COG0354 proteins have folate-dependent functions in iron–sulphur cluster metabolism. J Exp Bot 63:403–411

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Tanaka K, Kasai Z (1982) Evidence for a precursor form of rice glutelin subunits. Agr Biol Chem Tokyo 46:321–322

    Google Scholar 

  • Yang L, Tada Y, Yamamoto MP, Zhao H, Yoshikawa M, Takaiwa F (2006) A transgenic rice seed accumulation an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580:3315–3320

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama T, Hatakeyama K (1998) Decameric GTP cyclohydrolase I forms complexes with two pentameric GTPCH feedback regulatory proteins in the presence of phenylalanine or of a combination of BH4 and GTP. J Biol Chem 273:20102–20108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D.V.D.S. and W.L. gratefully acknowledge financial support from Ghent University (Bijzonder Onderzoeksfonds, BOF2004/GOA/012 and BOF2009/G0A/004), and the Fund for Scientific Research Flanders (FWO, project 3G012609). D.B. was indebted to FWO (Fonds voor Wetenschappelijk Onderzoek—Vlaanderen), for a PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Van Der Straeten.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blancquaert, D., Van Daele, J., Storozhenko, S. et al. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Mol Biol 83, 329–349 (2013). https://doi.org/10.1007/s11103-013-0091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0091-7

Keywords

Navigation