Skip to main content
Log in

Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Calcium/calmodulin (Ca2+/CaM) has long been considered a crucial component in wound signaling pathway. However, very few Ca2+/CaM-binding proteins have been identified which regulate plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca2+/CaM-binding transcription factors designated as AtSRs (also known as AtCAMTAs) can respond differentially to wounding stress. Further studies revealed that AtSR1/CAMTA3 is a negative regulator of plant defense, and Ca2+/CaM-binding to AtSR1 is indispensable for the suppression of salicylic acid (SA) accumulation and disease resistance. Here we report that Ca2+/CaM-binding is also critical for AtSR1-mediated herbivore-induced wound response. Interestingly, atsr1 mutant plants are more susceptible to herbivore attack than wild-type plants. Complementation of atsr1 mutant plants by overexpressing wild-type AtSR1 protein can effectively restore plant resistance to herbivore attack. However, when mutants of AtSR1 with impaired CaM-binding ability were overexpressed in atsr1 mutant plants, plant resistance to herbivore attack was not restored, suggesting a key role for Ca2+/CaM-binding in wound signaling. Furthermore, it was observed that elevated SA levels in atsr1 mutant plants have a negative impact on both basal and induced biosynthesis of jasmonates (JA). These results revealed that Ca2+/CaM-mediated signaling regulates plant response to herbivore attack/wounding by modulating the SA-JA crosstalk through AtSR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CaM:

Calmodulin

CML:

CaM-like protein

CaMBD:

CaM-binding Domain

AtSR:

Arabidopsis thaliana signal responsive gene

CAMTA:

CaM-binding transcription activator

CDPK:

Calcium-dependent protein kinase

SA:

Salicylic acid

JA:

Jasmonate

JA-Ile:

Jasmonoyl-l-isoleucine

JR2:

Jasmonate-responsive 2

WR3:

Wound-responsive 3

VSP1:

Vegetative storage protein 1

NahG:

Salicylate hydroxylase

EDS1:

Enhanced disease susceptibility 1

EDS5:

Enhanced disease susceptibility 5

PAD4:

Phytoalexin deficient 4

ICS1:

Isochorismate synthase 1

References

  • Ali GS, Reddy VS, Lindgren PB, Jakobek JL, Reddy AS (2003) Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Mol Biol 51(6):803–815

    Article  PubMed  CAS  Google Scholar 

  • Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol (Stuttg) 8(1):1–10

    Article  CAS  Google Scholar 

  • Bergey DR, Ryan CA (1999) Wound- and systemin-inducible calmodulin gene expression in tomato leaves. Plant Mol Biol 40(5):815–823

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126(3):1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277(24):21851–21861

    Article  PubMed  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165(2):373–389

    Article  PubMed  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60(3):357–364

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129(2):661–677

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38(5):810–822

    Article  PubMed  CAS  Google Scholar 

  • Chung KM, Sano H (2007) Transactivation of wound-responsive genes containing the core sequence of the auxin-responsive element by a wound-induced protein kinase-activated transcription factor in tobacco plants. Plant Mol Biol 65(6):763–773

    Article  PubMed  CAS  Google Scholar 

  • Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA (1995a) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108(4):1741–1746

    PubMed  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995b) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92(10):4095–4098

    Article  PubMed  CAS  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant cell 21(3):972–984

    Article  PubMed  CAS  Google Scholar 

  • Du L, Poovaiah BW (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437(7059):741–745

    Article  PubMed  CAS  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457(7233):1154–1158

    Article  PubMed  CAS  Google Scholar 

  • Du L, Yang T, Puthanveettil SV, Poovaiah BW (2011) Decoding of calcium signal through calmodulin: calmodulin-binding proteins in plants. In: Luan S (ed) Coding and decoding of calcium signals in plants, Signaling and Communication in Plants, vol 10. Springer, Berlin. doi:10.1007/978-3-642-20829-4_11

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Gleason C, Chaudhuri S, Yang T, Munoz A, Poovaiah BW, Oldroyd GE (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441(7097):1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Harms K, Ramirez II, Pena-Cortes H (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 118(3):1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  PubMed  CAS  Google Scholar 

  • Jung KY, Kyung CE, In LS, Lim CO, Ju CY (2010) Differential expression of rice calmodulin promoters in response to stimuli and developmental tissue in transgenic tobacco plants. BMB Rep 43(1):9–16

    Article  PubMed  Google Scholar 

  • Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y (2007) A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol 48(2):332–344

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146(4):1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Read ND, Campbell AK, Trewavas AJ (1993) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J Cell Biol 121(1):83–90

    Article  PubMed  CAS  Google Scholar 

  • Koo AJ, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70(13–14):1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146(3):839–844

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171(2):249–269

    Article  PubMed  CAS  Google Scholar 

  • Leon J, Rojo E, Titarenko E, Sanchez-Serrano JJ (1998) Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in Arabidopsis thaliana. Mol Gen Genet 258(4):412–419

    Article  PubMed  CAS  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102(30):10736–10741

    Article  PubMed  CAS  Google Scholar 

  • Lulai EC, Suttle JC, Pederson SM (2008) Regulatory involvement of abscisic acid in potato tuber wound-healing. J Exp Bot 59(6):1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68(22–24):2946–2959

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94(10):5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Ohta M (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167(7):555–560

    Article  PubMed  CAS  Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140(1):249–262

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein–protein interaction. Plant Physiol 142(3):1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Phean OPS, Punteeranurak P, Buaboocha T (2005) Calcium signaling-mediated and differential induction of calmodulin gene expression by stress in Oryza sativa L. J Biochem Mol Biol 38(4):432–439

    Article  Google Scholar 

  • Poovaiah BW, Reddy AS (1987) Calcium messenger system in plants. CRC Crit Rev Plant Sci 6(1):47–103

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Reddy AS (1993) Calcium and signal transduction in plants. CRC Crit Rev Plant Sci 12(3):185–211

    PubMed  CAS  Google Scholar 

  • Qiu Y, Xi J, Du L, Roje S, Poovaiah BW (2012) A dual regulatory role of Arabidopsis calreticulin-2 in plant innate immunity. Plant J 69(3):489–500

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160(3):381–404

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CM (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant cell 15(3):760–770

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104(47):18842–18847

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98(22):12837–12842

    Article  PubMed  CAS  Google Scholar 

  • Suttle JC, Huckle LL, Lulai EC (2011) The effects of dormancy status on the endogenous contents and biological activities of jasmonic acid, n-(jasmonoyl)-isoleucine, and tuberonic acid in potato tubers. Am J Potato Res 88:283–293

    Article  Google Scholar 

  • Szczegielniak J, Klimecka M, Liwosz A, Ciesielski A, Kaczanowski S, Dobrowolska G, Harmon AC, Muszynska G (2005) A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol 139(4):1970–1983

    Article  PubMed  CAS  Google Scholar 

  • Szepesi A, Csiszar J, Gemes K, Horvath E, Horvath F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166(9):914–925

    Article  PubMed  CAS  Google Scholar 

  • Titarenko E, Rojo E, Leon J, Sanchez-Serrano JJ (1997) Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol 115(2):817–826

    Article  PubMed  CAS  Google Scholar 

  • Vanderbeld B, Snedden WA (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Mol Biol 64(6):683–697

    Article  PubMed  CAS  Google Scholar 

  • Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K (2007) Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 3(10):1800–1812

    Article  PubMed  CAS  Google Scholar 

  • Xi J, Qiu Y, Du L, Poovaiah BW (2012) Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci 185–186:274–280

    Article  PubMed  Google Scholar 

  • Yamada K, Nishimura M, Hara-Nishimura I (2004) The slow wound-response of gammaVPE is regulated by endogenous salicylic acid in Arabidopsis. Planta 218(4):599–605

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur J Biochem 268(14):3916–3929

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2004) Plant MAPK phosphatase interacts with calmodulins. J Biol Chem 279(2):928–936

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2000) An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. J Biol Chem 275(49):38467–38473

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277(47):45049–45058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation grant no. 1021344 and the National Research Initiative Competitive Grant no. 2008-35100-04566 from the U.S. Department of Agriculture, National Institute of Food and Agriculture. We thank Linda L. Huckle of the U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND for her help with SA, JA and JA-Ile quantification, and Lorie Mochel, Washington State University, for her help with preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. Poovaiah.

Additional information

Yongjian Qiu and Jing Xi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Xi, J., Du, L. et al. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Mol Biol 79, 89–99 (2012). https://doi.org/10.1007/s11103-012-9896-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9896-z

Keywords

Navigation