Skip to main content
Log in

[68 Ga]-DOTATATE PET/MR-based evaluation of physiologic somatostatin receptor 2 expression in the adult pituitary gland as a function of age and sex in a prospective cohort

  • Research
  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

The pituitary gland has the fourth highest physiologic avidity of [68 Ga]-DOTATATE. In order to guide our understanding of [68 Ga]-DOTATATE PET in clinical contexts, accurate characterization of the normal pituitary gland is first required. This study aimed to characterize the normal pituitary gland using dedicated brain [68 Ga]-DOTATATE PET/MRI as a function of age and sex.

Methods

A total of 95 patients with a normal pituitary gland underwent brain [68 Ga]-DOTATATE PET examinations for the purpose of diagnosing CNS SSTR2 positive tumors (mean age: 58.9, 73% female). Maximum SUV of the pituitary gland was obtained in each patient. SUV of superior sagittal sinus was obtained to calculate normalized SUV score (SUVR) of the gland. The anatomic size of the gland was collected as maximum sagittal height (MSH). Correlations with age and sex were analyzed.

Results

The mean SUV and SUVR of the pituitary gland were 17.6 (range: 7–59.5, SD = 7.1) and 13.8 (range: 3.3–52.6, SD = 7.2), respectively. Older females had significantly higher SUV of the pituitary gland compared to younger females. When stratified by age and sex, both older and younger females had significantly higher pituitary SUV than older males. SUVR did not differ significantly by age or sex. MSH of the pituitary gland in younger females was significantly greater than in younger males at all age cutoffs.

Conclusion

This study provides an empiric profiling of the physiological [68 Ga]-DOTATATE avidity of the pituitary gland. The findings suggest that SUV may vary by age and sex and can help guide the use of [68 Ga]-DOTATATE PET/MRI in clinical and research settings. Future studies can build on these findings to investigate further the relationship between pituitary biology and demographic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Eigler T, Ben-Shlomo A (2014) Somatostatin system: molecular mechanisms regulating anterior pituitary hormones. J Mol Endocrinol 53:R1-19

    Article  CAS  PubMed  Google Scholar 

  2. Panetta R, Patel YC (1995) Expression of mRNA for all five human somatostatin receptors (hSSTR1-5) in pituitary tumors. Life Sci 56:333–342

    Article  CAS  PubMed  Google Scholar 

  3. Tebani A, Jotanovic J, Hekmati N et al (2021) Annotation of pituitary neuroendocrine tumors with genome-wide expression analysis. Acta Neuropathol Commun 9:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomes-Porras M, Cardenas-Salas J, Alvarez-Escola C (2020) Somatostatin analogs in clinical practice: a review. Int J Mol Sci 21(5):1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thodou E, Kontogeorgos G (2020) Somatostatin receptor profile in pituitary thyrotroph adenomas. Clin Neurol Neurosurg 195:105865

    Article  PubMed  Google Scholar 

  6. Vieria Neto L, Wildemberg LE, Colli LM et al (2013) ZAC1 and SSTR2 are downregulated in non-functioning pituitary adenomas but not in somatotropinomas. PLoS ONE 8:e77406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishioka H, Tamura K, Iida H et al (2011) Co-expression of somatostatin receptor subtypes and estrogen receptor-α mRNAs by non-functioning pituitary adenomas in young patients. Mol Cell Endocrinol 331:73–78

    Article  CAS  PubMed  Google Scholar 

  8. Taboada GF, Luque RM, Bastos W et al (2007) Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol 156:65–74

    Article  CAS  PubMed  Google Scholar 

  9. Øystese KA, Casar-Borota O, Normann KR, Zucknick M, Berg JP, Bollerslev J (2017) Estrogen receptor α, a sex-dependent predictor of aggressiveness in nonfunctioning pituitary adenomas: SSTR and sex hormone receptor distribution in NFPA. J Clin Endocrinol Metab 102:3581–3590

    Article  PubMed  Google Scholar 

  10. Tjörnstrand A, Casar-Borota O, Heurling K et al (2020) Lower (68) Ga-DOTATOC uptake in nonfunctioning pituitary neuroendocrine tumours compared to normal pituitary gland-A proof-of-concept study. Clin Endocrinol (Oxf) 92:222–231

    Article  PubMed  Google Scholar 

  11. Fusco A, Giampietro A, Bianchi A et al (2012) Treatment with octreotide LAR in clinically non-functioning pituitary adenoma: results from a case-control study. Pituitary 15:571–578

    Article  CAS  PubMed  Google Scholar 

  12. Ramírez C, Cheng S, Vargas G et al (2012) Expression of Ki-67, PTTG1, FGFR4, and SSTR 2, 3, and 5 in nonfunctioning pituitary adenomas: a high throughput TMA, immunohistochemical study. J Clin Endocrinol Metab 97:1745–1751

    Article  PubMed  Google Scholar 

  13. Gabalec F, Drastikova M, Cesak T et al (2015) Dopamine 2 and somatostatin 1–5 receptors coexpression in clinically non-functioning pituitary adenomas. Physiol Res 64:369–377

    Article  CAS  PubMed  Google Scholar 

  14. Reubi JC, Schar JC, Waser B et al (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282

    Article  CAS  PubMed  Google Scholar 

  15. Ozguven S, Filizoglu N, Kesim S et al (2021) Physiological Biodistribution of (68)Ga-DOTA-TATE in Normal Subjects. Mol Imaging Radionucl Ther 30:39–46

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kandathil A, Subramaniam R (2022) Gastroenteropancreatic neuroendocrine tumor diagnosis: DOTATATE PET/CT. PET Clin. https://doi.org/10.1016/j.cpet.2022.11.001

    Article  PubMed  Google Scholar 

  17. Kunz WG, Jungblut LM, Kazmierczak PM et al (2017) Improved detection of transosseous meningiomas using (68)Ga-DOTATATE PET/CT compared with contrast-enhanced MRI. J Nucl Med 58:1580–1587

    Article  CAS  PubMed  Google Scholar 

  18. Ivanidze J, Roytman M, Lin E et al (2019) Gallium-68 DOTATATE PET in the evaluation of Intracranial Meningiomas. J Neuroimaging 29:650–656

    Article  PubMed  Google Scholar 

  19. Roytman M, Tassler AB, Kacker A et al (2021) [68Ga]-DOTATATE PET/CT and PET/MRI in the diagnosis and management of esthesioneuroblastoma: illustrative cases. J Neurosurg Case Lessons. https://doi.org/10.3171/CASE2058

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim SH, Roytman M, Kamen E et al (2021) [68Ga]-DOTATATE PET/MRI in the diagnosis and management of recurrent head and neck paraganglioma with spinal metastasis. Clin Imaging 79:314–318

    Article  PubMed  Google Scholar 

  21. Kim SH, Roytman M, Madera G et al (2022) Evaluating diagnostic accuracy and determining optimal diagnostic thresholds of different approaches to [(68)Ga]-DOTATATE PET/MRI analysis in patients with meningioma. Sci Rep 12:9256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sen R, Sen C, Pack J et al (2017) Role of high-resolution dynamic contrast-enhanced mri with golden-angle radial sparse parallel reconstruction to identify the normal pituitary gland in patients with macroadenomas. AJNR Am J Neuroradiol 38:1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berntsen EM, Haukedal MD, Håberg AK (2021) Normative data for pituitary size and volume in the general population between 50 and 66 years. Pituitary 24:737–745

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sari S, Sari E, Akgun V et al (2014) Measures of pituitary gland and stalk: from neonate to adolescence. J Pediatr Endocrinol Metab 27:1071–1076

    PubMed  Google Scholar 

  25. Singh AKC, Kandasamy D, Garg A, Jyotsna VP, Khadgawat R (2018) Study of pituitary morphometry using MRI in Indian subjects. Indian J Endocrinol Metab 22:605–609

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Hou B, Lu L et al (2018) PET/MRI in the diagnosis of hormone-producing pituitary microadenoma: a prospective pilot study. J Nucl Med 59:523–528

    Article  CAS  PubMed  Google Scholar 

  27. Zhao X, Xiao J, Xing B, Wang R, Zhu Z, Li F (2014) Comparison of (68)Ga DOTATATE to 18F-FDG uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidal adenomectomy. Clin Nucl Med 39:605–608

    Article  PubMed  Google Scholar 

  28. MacMaster FP, Keshavan M, Mirza Y et al (2007) Development and sexual dimorphism of the pituitary gland. Life Sci 80:940–944

    Article  CAS  PubMed  Google Scholar 

  29. Elster AD, Chen MY, Williams DW 3rd, Key LL (1990) Pituitary gland: MR imaging of physiologic hypertrophy in adolescence. Radiology 174:681–685

    Article  CAS  PubMed  Google Scholar 

  30. Doraiswamy PM, Potts JM, Axelson DA et al (1992) MR assessment of pituitary gland morphology in healthy volunteers: age- and gender-related differences. AJNR Am J Neuroradiol 13:1295–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsunoda A, Okuda O, Sato K (1997) MR height of the pituitary gland as a function of age and sex: especially physiological hypertrophy in adolescence and in climacterium. AJNR Am J Neuroradiol 18:551–554

    CAS  PubMed  PubMed Central  Google Scholar 

  32. National Academies of Sciences E, Medicine, Division of B, et al. The National Academies Collection: Reports funded by National Institutes of Health. In: Becker T, Chin M, Bates N, eds. Measuring Sex, Gender Identity, and Sexual Orientation. Washington (DC): National Academies Press (US) Copyright 2022 by the National Academy of Sciences. All rights reserved., 2022

  33. Riaz H, Dong P, Shahzad M, Yang L (2014) Constitutive and follicle-stimulating hormone-induced action of somatostatin receptor-2 on regulation of apoptosis and steroidogenesis in bovine granulosa cells. J Steroid Biochem Mol Biol 141:150–159

    Article  CAS  PubMed  Google Scholar 

  34. Kimura N, Hayafuji C, Konagaya H, Takahashi K (1986) 17 beta-estradiol induces somatostatin (SRIF) inhibition of prolactin release and regulates SRIF receptors in rat anterior pituitary cells. Endocrinology 119:1028–1036

    Article  CAS  PubMed  Google Scholar 

  35. Djordjijevic D, Zhang J, Priam M et al (1998) Effect of 17beta-estradiol on somatostatin receptor expression and inhibitory effects on growth hormone and prolactin release in rat pituitary cell cultures. Endocrinology 139:2272–2277

    Article  CAS  PubMed  Google Scholar 

  36. Visser-Wisselaar HA, Van Uffelen CJ, Van Koetsveld PM et al (1997) 17-beta-estradiol-dependent regulation of somatostatin receptor subtype expression in the 7315b prolactin secreting rat pituitary tumor in vitro and in vivo. Endocrinology 138:1180–1189

    Article  CAS  PubMed  Google Scholar 

  37. Lin X, Janovick JA, Cardenas R, Conn PM, Peter RE (2000) Molecular cloning and expression of a type-two somatostatin receptor in goldfish brain and pituitary. Mol Cell Endocrinol 166:75–87

    Article  CAS  PubMed  Google Scholar 

  38. Yan M, Jones ME, Hernandez M, Liu D, Simpson ER, Chen C (2005) Oestrogen replacement in vivo rescues the dysfunction of pituitary somatotropes in ovariectomised aromatase knockout mice. Neuroendocrinology 81:158–166

    Article  CAS  PubMed  Google Scholar 

  39. Señarís RM, Lago F, Diéguez C (1996) Gonadal regulation of somatostatin receptor 1, 2 and 3 mRNA levels in the rat anterior pituitary. Brain Res Mol Brain Res 38:171–175

    Article  PubMed  Google Scholar 

  40. Canosa LF, Lin X, Peter RE (2003) Effects of sex steroid hormones on the expression of somatostatin receptors sst1 and sst5 in goldfish pituitary and forebrain. Neuroendocrinology 78:81–89

    Article  CAS  PubMed  Google Scholar 

  41. Dinç H, Esen F, Demirci A, Sari A, Resit GH (1998) Pituitary dimensions and volume measurements in pregnancy and post partum. MR assessment Acta Radiol 39:64–69

    PubMed  Google Scholar 

  42. Daghighi MH, Seifar F, Parviz A et al (2019) The effect of females’ reproductive factors on pituitary gland size in women at reproductive age. Medicina. https://doi.org/10.3390/medicina55070367

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grams AE, Gempt J, Stahl A, Förschler A (2010) Female pituitary size in relation to age and hormonal factors. Neuroendocrinology 92:128–132

    Article  CAS  PubMed  Google Scholar 

  44. Abech DD, Moratelli HB, Leite SC, Oliveira MC (2005) Effects of estrogen replacement therapy on pituitary size, prolactin and thyroid-stimulating hormone concentrations in menopausal women. Gynecol Endocrinol 21:223–226

    Article  CAS  PubMed  Google Scholar 

  45. Chen KX, Worley S, Foster H et al (2021) Oral contraceptive use is associated with smaller hypothalamic and pituitary gland volumes in healthy women: a structural MRI study. PLoS ONE 16:e0249482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fehrenbach U, Jadan A, Auer TA et al (2020) Obesity and pituitary gland volume - a correlation study using three-dimensional magnetic resonance imaging. Neuroradiol J 33:400–409

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martinez Quintero B, Yazbeck C (2020) Pituitary hyperplasia secondary to primary hypothyroidism. Clin Case Rep 8:1317–1318

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Advanced Accelerator Applications, A Novartis Company [Study Number: CAAA501A0US05T] as part of the DOMINO-START clinical trial protocol [ClinicalTrials.gov Identifier: NCT04081701]. Sean H. Kim also acknowledges funding support from Radiological Society of North America (RSNA Medical Student Research Grant).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SHK, SJCC, and JI. The first draft of the manuscript was written by SHK, SJCC, and JI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jana Ivanidze.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Institutional review board approval with informed consent from all individual participants was obtained for this HIPAA compliant study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Chang, S.J.C., Dobri, G. et al. [68 Ga]-DOTATATE PET/MR-based evaluation of physiologic somatostatin receptor 2 expression in the adult pituitary gland as a function of age and sex in a prospective cohort. Pituitary 26, 419–428 (2023). https://doi.org/10.1007/s11102-023-01329-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-023-01329-0

Keywords

Navigation