Skip to main content

Advertisement

Log in

Genetics, clinical features and outcomes of non-syndromic pituitary gigantism: experience of a single center from Sao Paulo, Brazil

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Non-syndromic pituitary gigantism (PG) is a very rare disease. Aryl hydrocarbon receptor-interacting protein (AIP) and G protein-coupled receptor 101 (GPR101) genetic abnormalities represent important etiologic causes of PG and may account for up to 40% of these cases. Here, we aimed to characterize the clinical and molecular findings and long-term outcomes in 18 patients (15 males, three females) with PG followed at a single tertiary center in Sao Paulo, Brazil.

Methods

Genetic testing for AIP and GPR101 were performed by DNA sequencing, droplet digital PCR and array comparative genomic hybridization (aCGH).

Results

Pathogenic variants in the AIP gene were detected in 25% of patients, including a novel variant in splicing regulatory sequences which was present in a sporadic male case. X-LAG due to GPR101 microduplication was diagnosed in two female patients (12.5%). Of interest, these patients had symptoms onset by age 5 and 9 years old and diagnosis at 5 and 15 years, respectively. X-LAG, but not AIP, patients had a significantly lower age of symptoms onset and diagnosis and a higher height Z-score when compared to non-X-LAG. No other differences in clinical features and/or treatment outcomes were observed among PG based on their genetic background.

Conclusion

We characterize the clinical and molecular findings and long-term outcome of the largest single-center PG cohort described so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data available within the article or its supplementary materials.

References

  1. Rostomyan L, Daly AF, Beckers A (2015) Pituitary gigantism: causes and clinical characteristics. Ann Endocrinol (Paris) 76:643–649. https://doi.org/10.1016/j.ando.2015.10.002

    Article  Google Scholar 

  2. Rostomyan L, Daly AF, Petrossians P et al (2015) Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr Relat Cancer 22:745–757. https://doi.org/10.1530/ERC-15-0320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dénes J, Swords F, Rattenberry E et al (2015) Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J Clin Endocrinol Metab 100:E531–E541. https://doi.org/10.1210/jc.2014-3399

    Article  CAS  PubMed  Google Scholar 

  4. Xekouki P, Szarek E, Bullova P et al (2015) Pituitary adenoma with paraganglioma/pheochromocytoma (3PAs) and succinate dehydrogenase defects in humans and mice. J Clin Endocrinol Metab 100:E710–E719. https://doi.org/10.1210/jc.2014-4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rostomyan L, Potorac I, Beckers P et al (2017) AIP mutations and gigantism. Ann Endocrinol (Paris) 78:123–130. https://doi.org/10.1016/j.ando.2017.04.012

    Article  Google Scholar 

  6. Vasilev V, Daly AF, Trivellin G et al (2020) The roles of AIP and GPR101 in familial isolated pituitary adenomas (FIPA). Endocr Relat Cancer 27:T77–T86. https://doi.org/10.1530/ERC-20-0015

    Article  CAS  PubMed  Google Scholar 

  7. Oriola J, Lucas T, Halperin I et al (2013) Germline mutations of AIP gene in somatotropinomas resistant to somatostatin analogues. Eur J Endocrinol 168:9–13. https://doi.org/10.1530/EJE-12-0457

    Article  CAS  PubMed  Google Scholar 

  8. Daly AF, Tichomirowa MA, Petrossians P et al (2010) Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2009-2556

    Article  PubMed  Google Scholar 

  9. Marques P, Caimari F, Hernández-Ramírez LC, et al (2020) Significant benefits of AIP testing and clinical screening in familial isolated and young onset pituitary tumors. J Clin Endocrinol Metab 105:2247–2260. https://doi.org/10.1210/clinem/dgaa040

    Article  CAS  Google Scholar 

  10. Trivellin G, Daly AF, Faucz FR et al (2014) Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med 371:2363–2374. https://doi.org/10.1056/NEJMoa1408028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beckers A, Lodish MB, Trivellin G, Rostomyan L, Lee M, Faucz FR et al (2015) X-linked acrogigantism (X-LAG) syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer 22:353–367. https://doi.org/10.1530/ERC-15-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beckers A, Rostomyan L, Potorac I et al (2017) X-LAG: How did they grow so tall? Ann Endocrinol (Paris) 78:131–136. https://doi.org/10.1016/j.ando.2017.04.013

    Article  Google Scholar 

  13. Beckers A, Petrossians P, Hanson J, Daly AF (2018) The causes and consequences of pituitary gigantism. Nat Rev Endocrinol 14:705–720

    Article  CAS  PubMed  Google Scholar 

  14. Silva DAS, Pelegrini A, Petroski EL, Gaya ACA (2010) Comparison between the growth of Brazilian children and adolescents and the reference growth charts: Data from a Brazilian project. J Pediatr (Rio J) 86:115–120. https://doi.org/10.2223/JPED.1975

    Article  Google Scholar 

  15. Tanner JM (1986) Normal growth and techniques of growth assessment. Clin Endocrinol Metab 15:411–451. https://doi.org/10.1016/S0300-595X(86)80005-6

    Article  CAS  PubMed  Google Scholar 

  16. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303. https://doi.org/10.1136/adc.44.235.291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23. https://doi.org/10.1136/adc.45.239.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pyle SI, Waterhouse AM, Greulich WW (1971) Attributes of the radiographic standard of reference for the National Health Examination Survey. Am J Phys Anthropol 35:331–337. https://doi.org/10.1002/ajpa.1330350306

    Article  CAS  PubMed  Google Scholar 

  19. Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C, Bolanowski M, Bonert V, Bronstein MD, Casanueva FF, Clemmons D, Colao A, Ferone D, Fleseriu M, Stefano Frara SM (2020) A consensus on the diagnosis and treatment of acromegaly comorbidities: an update—PubMed. J Clin Endocrinol Metab 105:e937–e946

    Article  Google Scholar 

  20. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iacovazzo D, Caswell R, Bunce B et al (2016) Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun 4:56. https://doi.org/10.1186/s40478-016-0328-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Daly AF, Rostomyan L, Betea D et al (2019) Aip-mutated acromegaly resistant to first-generation somatostatin analogs: long-term control with pasireotide lar in two patients. Endocr Connect 8:367–377. https://doi.org/10.1530/EC-19-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joshi K, Daly AF, Beckers A, Zacharin M (2018) Resistant paediatric somatotropinomas due to AIP mutations: role of pegvisomant. Horm Res Paediatr 90:196–202. https://doi.org/10.1159/000488856

    Article  CAS  PubMed  Google Scholar 

  24. Goldenberg N, Racine MS, Thomas P et al (2008) Treatment of pituitary gigantism with the growth hormone receptor antagonist pegvisomant. J Clin Endocrinol Metab 93:2953–2956. https://doi.org/10.1210/jc.2007-2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. García WR, Cortes HT, Romero AF (2019) Pituitary gigantism: A case series from hospital de san josé (Bogotá, Colombia). Arch Endocrinol Metab 63:385–393. https://doi.org/10.20945/2359-3997000000150

    Article  PubMed  Google Scholar 

  26. Mangupli R, Rostomyan L, Castermans E et al (2016) Combined treatment with octreotide LAR and pegvisomant in patients with pituitary gigantism: clinical evaluation and genetic screening. Pituitary 19:507–514. https://doi.org/10.1007/s11102-016-0732-3

    Article  CAS  PubMed  Google Scholar 

  27. Tortora F, Negro A, Grasso LFS et al (2019) Pituitary magnetic resonance imaging predictive role in the therapeutic response of growth hormone-secreting pituitary adenomas. Gland Surg 8:S150–S158. https://doi.org/10.21037/gs.2019.06.04

    Article  PubMed  PubMed Central  Google Scholar 

  28. Potorac I, Petrossians P, Daly AF et al (2016) T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer 23:871–881. https://doi.org/10.1530/ERC-16-0356

    Article  PubMed  Google Scholar 

  29. Potorac I, Petrossians P, Daly AF et al (2015) Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr Relat Cancer 22:169–177. https://doi.org/10.1530/ERC-14-0305

    Article  CAS  PubMed  Google Scholar 

  30. Heck A, Ringstad G, Fougner SL et al (2012) Intensity of pituitary adenoma on T2-weighted magnetic resonance imaging predicts the response to octreotide treatment in newly diagnosed acromegaly. Clin Endocrinol (Oxf) 77:72–78. https://doi.org/10.1111/j.1365-2265.2011.04286.x

    Article  CAS  Google Scholar 

  31. Trivellin G, Faucz FR, Daly AF et al (2020) GPR101, an orphan GPCR with roles in growth and pituitary tumorigenesis. Endocr Relat Cancer 27:T87–T97. https://doi.org/10.1530/ERC-20-0025

    Article  CAS  PubMed  Google Scholar 

  32. Daly AF, Yuan B, Fina F, Caberg JH, Trivellin G, Rostomyan L, de Herder WW, Naves LA, Metzger D, Cuny T, Rabl W, Shah N, Jaffrain-Rea ML, Zatelli MC, Faucz FR, Castermans E, Nanni-Metellus I, Lodish M, Muhammad A, Palmeira L, Potorac I, Mantovani G, Neggers SJ, Klein M, Barlier A, Liu P, Ouafik L, Bours V, Lupski JR, Stratakis CA, Beckers A (2016) Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr Relat Cancer 23(4):221–233

    Article  Google Scholar 

  33. Rodd C, Millette M, Iacovazzo D et al (2016) Somatic GPR101 duplication causing X-linked acrogigantism (XLAG) - Diagnosis and management. J Clin Endocrinol Metab 101:1927–1930. https://doi.org/10.1210/jc.2015-4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trivellin G, Hernández-Ramírez LC, Swan J, Stratakis CA (2018) An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: molecular biology and clinical correlations. Best Pract Res Clin Endocrinol Metab 32:125–140. https://doi.org/10.1016/j.beem.2018.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was in part funded by the intramural research program, NICHD, NIH, Bethesda, MD, USA (to CAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel S. Jallad.

Ethics declarations

Conflicts of interest

EBT, IPPG, FHGD, AALJ, FBPN, HMG, MN, BBM, MDB and RSJ have nothing to declare. CAS and GT hold a patent on the GPR101 gene and its function and have received funding from Pfizer, Inc., on growth hormone and acromegaly research. CAS also holds patents on PRKAR1A and PDE11A genes and their function.

Ethics approval

This study was approved by the local Ethics Committee and an Informed Consent form was obtained from All Patients or their Legal Guardian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trarbach, E.B., Trivellin, G., Grande, I.P.P. et al. Genetics, clinical features and outcomes of non-syndromic pituitary gigantism: experience of a single center from Sao Paulo, Brazil. Pituitary 24, 252–261 (2021). https://doi.org/10.1007/s11102-020-01105-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-020-01105-4

Keywords

Navigation