Skip to main content

Advertisement

Log in

Preoperative visual evoked potential in the prediction of visual outcome after pituitary macroadenomas surgery

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Objective

The purpose of the present study is to investigate longitudinal changes in Visual evoked potential (VEP) parameters as an objective test after transsphenoidal surgery, its correlation with subjective tests and clinical value of VEP in the prediction of visual outcome.

Methods

Fifty patients with pituitary macroadenoma who underwent surgical removal of the tumor recruited in this study. All the patients underwent ophthalmic examination, static automated perimetry (SAP), VEP and magnetic resonance imaging (MRI) preoperatively and 3 months after surgery.

Results

Fifty patients with pituitary macroadenoma (size: 25.1 ± 9.9 mm) were recruited in the study. Before surgery, the pattern of VEP showed a prolonged latency with reduced amplitude in eyes with abnormal visual acuity or abnormal visual field. The P100 wave latencies and amplitudes showed significant correlation with visual acuity and SAP scores. After surgery, visual acuity and visual field improvements were seen in 51% and 65.6% of eyes, respectively. Mean SAP and visual acuity scores increased significantly (p < 0.01), P100 wave latency declined and amplitude improved after surgery but not significantly. The mean age of patients, size of tumors and preoperative P100 wave latency were significantly lower in eyes with visual field and acuity improvement.

Conclusion

VEP is a helpful quantitative and objective complementary test to visual acuity and SAP exams for assessing pre-operative visual abnormalities and post-operative visual outcome in patients with pituitary macroadenoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Molitch ME (2017) Diagnosis and treatment of pituitary adenomas: a review. JAMA 317(5):516–524

    Article  PubMed  Google Scholar 

  2. Hornyak M, Digre K, Couldwell WT (2009) Neuro-ophthalmologic manifestations of benign anterior skull base lesions. Postgrad Med 121(4):103–114

    Article  PubMed  Google Scholar 

  3. Kivelä T, Pelkonen R, Oja M, Heiskanen O (1998) Diabetes insipidus and blindness caused by a suprasellar tumor: Pieter Pauw’s observations from the 16th century. JAMA 279(1):48–50

    Article  PubMed  Google Scholar 

  4. Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM (2007) Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Invest Ophthalmol Vis Sci 48(2):692–698

    Article  PubMed  Google Scholar 

  5. Klistorner A, Graham S, Fraser C, Garrick R, Nguyen T, Paine M, O’Day J, Grigg J, Arvind H, Billson FA (2007) Electrophysiological evidence for heterogeneity of lesions in optic neuritis. Invest Ophthalmol Vis Sci 48(10):4549–4556

    Article  PubMed  Google Scholar 

  6. Gott PS, Weiss MH, Apuzzo M, Van Der Meulen JP (1979) > Checkerboard visual evoked response in evaluation and management of pituitary tumors. Neurosurgery 5(5):553–558

    Article  CAS  PubMed  Google Scholar 

  7. Petersen J (1984) Objective determination of visual acuity by visual evoked potentials. Spec Tests Vis Funct 9:108–114

    CAS  Google Scholar 

  8. Feinsod M, Selhorst JB, Hoyt WF, Wilson CB (1976) Monitoring optic nerve function during craniotomy. J Neurosurg 44(1):29–31

    Article  CAS  PubMed  Google Scholar 

  9. Wilson W, Kirsch W, Neville H, Stears J, Feinsod M, Lehman R (1976) Monitoring of visual function during parasellar surgery. Surg Neurol 5(6):323–329

    CAS  PubMed  Google Scholar 

  10. Semela L, Hedges TR, Vuong L (2007) Serial multifocal visual evoked potential recordings in compressive optic neuropathy. Ophthalmic Sur Lasers Imaging Retina 38(3):250–253

    Google Scholar 

  11. Flanagan J, Harding G (1988) Multi-channel visual evoked potentials in early compressive lesions of the chiasm. Doc Ophthalmol 69(3):271–281

    Article  CAS  PubMed  Google Scholar 

  12. Klistorner A, Arvind H, Garrick R, Graham SL, Paine M, Yiannikas C (2010) Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis. Invest Ophthalmol Vis Sci 51(5):2770–2777

    Article  PubMed  Google Scholar 

  13. Laron M, Cheng H, Zhang B, Schiffman JS, Tang RA, Frishman LJ (2010) Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients. Mult Scler J 16(4):412–426

    Article  Google Scholar 

  14. Sriram P, Wang C, Yiannikas C, Garrick R, Barnett M, Parratt J, Graham SL, Arvind H, Klistorner A (2014) Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients. PLoS ONE 9(8):e102546

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qiao N, Ye Z, Shou X, Wang Y, Li S, Wang M, Zhao Y (2016) Discrepancy between structural and functional visual recovery in patients after trans-sphenoidal pituitary adenoma resection. Clin Neurol Neurosurg 151:9–17

    Article  PubMed  Google Scholar 

  16. Hood DC, Odel JG, Zhang X (2000) Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Invest Ophthalmol Vis Sci 41(12):4032–4038

    CAS  PubMed  Google Scholar 

  17. Qiao N, Zhang Y, Ye Z, Shen M, Shou X, Wang Y, Li S, Wang M, Zhao Y (2015) Comparison of multifocal visual evoked potential, static automated perimetry, and optical coherence tomography findings for assessing visual pathways in patients with pituitary adenomas. Pituitary 18(5):598–603

    Article  CAS  PubMed  Google Scholar 

  18. Jayaraman M, Ambika S, Gandhi RA, Bassi SR, Ravi P, Sen P (2010) Multifocal visual evoked potential recordings in compressive optic neuropathy secondary to pituitary adenoma. Doc Ophthalmol 121(3):197–204

    Article  PubMed  Google Scholar 

  19. Watanabe K, Shinoda K, Kimura I, Mashima Y, Oguchi Y, Ohde H (2007) Discordance between subjective perimetric visual fields and objective multifocal visual evoked potential-determined visual fields in patients with hemianopsia. Am J Ophthalmol 143(2):295.e293–304.e293

    Article  Google Scholar 

  20. Holder GE, Bullock PR (1989) Visual evoked potentials in the assessment of patients with non-functioning chromophobe adenomas. J Neurol Neurosurg Psychiatry 52(1):31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kerrison JB, Lynn MJ, Baer CA, Newman SA, Biousse V, Newman NJ (2000) Stages of improvement in visual fields after pituitary tumor resection. Am J Ophthalmol 130(6):813–820

    Article  CAS  PubMed  Google Scholar 

  22. Anik I, Anik Y, Koc K, Ceylan S, Genc H, Altintas O, Ozdamar D, Ceylan DB (2011) Evaluation of early visual recovery in pituitary macroadenomas after endoscopic endonasal transphenoidal surgery: quantitative assessment with diffusion tensor imaging (DTI). Acta Neurochir 153(4):831–842

    Article  PubMed  Google Scholar 

  23. Barzaghi LR, Medone M, Losa M, Bianchi S, Giovanelli M, Mortini P (2012) Prognostic factors of visual field improvement after trans-sphenoidal approach for pituitary macroadenomas: review of the literature and analysis by quantitative method. Neurosurg Rev 35(3):369–379

    Article  PubMed  Google Scholar 

  24. Thotakura AK, Patibandla MR, Panigrahi MK, Addagada GC (2017) Predictors of visual outcome with transsphenoidal excision of pituitary adenomas having suprasellar extension: a prospective series of 100 cases and brief review of the literature. Asian J Neurosurg 12(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu F-F, Chen L-L, Su Y-H, Huo L-H, Lin X-X, Liao R-D (2015) Factors influencing improvement of visual field after trans-sphenoidal resection of pituitary macroadenomas: a retrospective cohort study. Int J Ophthalmol 8(6):1224

    PubMed  PubMed Central  Google Scholar 

  26. Ahmed AH, Giri J, Kashyap R, Singh B, Dong Y, Kilickaya O, Erwin PJ, Murad MH, Pickering BW (2015) Outcome of adverse events and medical errors in the intensive care unit: a systematic review and meta-analysis. Am J Med Qual 30(1):23–30

    Article  PubMed  Google Scholar 

  27. Zhan R, Ma Z, Wang D, Li X (2015) Pure endoscopic endonasal transsphenoidal approach for nonfunctioning pituitary adenomas in the elderly: surgical outcomes and complications in 158 patients. World Neurosurg 84(6):1572–1578

    Article  PubMed  Google Scholar 

  28. Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, Frampton C, Daniell M, Savino PJ, Kaye AH (2015) Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 22(7):1098–1104

    Article  PubMed  Google Scholar 

  29. Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147(1):64.e62–70.e62

    Article  Google Scholar 

  30. Moon CH, Hwang SC, Ohn Y-H, Park TK (2011) The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci 52(11):7966–7973

    Article  PubMed  Google Scholar 

  31. Lachowicz E, Lubiński W (2018) The importance of the electrophysiological tests in the early diagnosis of ganglion cells and/or optic nerve dysfunction coexisting with pituitary adenoma: an overview. Doc Ophthalmol 137(3):193–202

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Zeinalizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghvaei, M., Sadrehosseini, S.M., Ostadrahimi, N. et al. Preoperative visual evoked potential in the prediction of visual outcome after pituitary macroadenomas surgery. Pituitary 22, 397–404 (2019). https://doi.org/10.1007/s11102-019-00969-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-019-00969-5

Keywords

Navigation