Skip to main content

Advertisement

Log in

Management of aggressive growth hormone secreting pituitary adenomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Aggressive GH-secreting pituitary adenomas (GHPAs) represent an important clinical problem in patients with acromegaly. Surgical therapy, although often the mainstay of treatment for GHPAs, is less effective in aggressive GHPAs due to their invasive and destructive growth patterns, and their proclivity for infrasellar invasion. Medical therapies for GHPAs, including somatostatin analogues and GH receptor antagonists, are becoming increasingly important adjuncts to surgical intervention. Stereotactic radiosurgery serves as an important fallback therapy for tumors that cannot be cured with surgery and medications. Data suggests that patients with aggressive and refractory GHPAs are best treated at dedicated tertiary pituitary centers with multidisciplinary teams of neuroendocrinologists, neurosurgeons, radiation oncologists and other specialists who routinely provide advanced care to GHPA patients. Future research will help clarify the defining features of “aggressive” and “atypical” PAs, likely based on tumor behavior, preoperative imaging characteristics, histopathological characteristics, and molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Giustina A, Chanson P, Kleinberg D, Bronstein MD, Clemmons DR, Klibanski A, van der Lely AJ, Strasburger CJ, Lamberts SW, Ho, KKY, Casanueva FF, Melmed S (2014) Expert consensus document: a consensus on the medical treatment of acromegaly. Nat Rev Endocrinol 10(4):243–248. doi:10.1038/nrendo.2014.21

    Article  CAS  PubMed  Google Scholar 

  2. Marquez Y, Tuchman A, Zada G (2012) Surgery and radiosurgery for acromegaly: a review of indications, operative techniques, outcomes, and complications. Int J Endocrinol 2012: 1–7. doi:10.1155/2012/386401

    Article  Google Scholar 

  3. Lugo G, Pena L, Cordido F (2012) Clinical manifestations and diagnosis of acromegaly. Int J Endocrinol 2012:1–10. doi:10.1155/2012/540398

    Article  Google Scholar 

  4. Melmed S, Casanueva F, Cavagnini F, Chanson P, Frohman LA, Gaillard R, Ghigo E, Ho K, Jaquet P, Kleinberg D, Lamberts S, Laws E, Lombardi G, Sheppard MC, Thorner M, Vance ML, Wass JA, Giustina A (2005) Consensus statement: medical management of acromegaly. Eur J Endocrinol 153(6):737–740

    Article  CAS  PubMed  Google Scholar 

  5. Dekkers OM, Biermasz NR, Pereira AM, Romijn JA, Vandenbroucke JP (2008) Mortality in acromegaly: a metaanalysis. J Clin Endocr Metab 93(1):61–67. doi:10.1210/jc.2007-1191

    Article  CAS  PubMed  Google Scholar 

  6. Giustina A, Chanson P, Bronstein MD, Klibanski A, Lamberts S, Casanueva FF, Trainer P, Ghigo E, Ho K, Melmed S (2010) A consensus on criteria for cure of acromegaly. J Clin Endocr Metab 95(7):3141–3148. doi:10.1210/jc.2009-2670

    Article  CAS  PubMed  Google Scholar 

  7. Galoiu S, Poiana C (2015) Current therapies and mortality in acromegaly. J Med Life 8(4):411–415

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Swearingen B, Barker FG, Katznelson L, Biller, BMK, Grinspoon S, Klibanski A, Moayeri N, Black PM, Zervas NT (1998) Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J Clin Endocr Metab 83(10):3419–3426. doi:10.1210/jcem.83.10.5222

    CAS  PubMed  Google Scholar 

  9. Yildirim AE, Sahinoglu M, Divanlioglu D, Alagoz F, Gurcay AG, Daglioglu E, Okay HO, Belen AD (2014) Endoscopic endonasal transsphenoidal treatment for acromegaly: 2010 consensus criteria for remission and predictors of outcomes. Turk Neurosurg 24(6):906–912. doi:10.5137/1019-5149.jtn.11288-14.1

    PubMed  Google Scholar 

  10. Shimon I, Jallad RS, Fleseriu M, Yedinak CG, Greenman Y, Bronstein MD (2015) Giant GH-secreting pituitary adenomas: management of rare and aggressive pituitary tumors. Eur J Endocrinol 172(6):707–713. doi:10.1530/eje-14-1117

    Article  CAS  PubMed  Google Scholar 

  11. Starke RM, Raper DMS, Payne SC, Vance ML, Oldfield EH, Jane JA (2013) Endoscopic vs microsurgical transsphenoidal surgery for acromegaly: outcomes in a concurrent series of patients using modern criteria for remission. J Clin Endocr Metab 98(8):3190–3198. doi:10.1210/jc.2013-1036

    Article  CAS  PubMed  Google Scholar 

  12. Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M, Grossman AB (2005) Diagnosis and management of pituitary carcinomas. J Clin Endocr Metab 90(5):3089–3099. doi:10.1210/jc.2004-2231

    Article  CAS  PubMed  Google Scholar 

  13. Nomikos P, Buchfelder M, Fahlbusch R (2005) The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure’. Eur J Endocrinol 152(3):379–387. doi:10.1530/eje.1.01863

    Article  CAS  PubMed  Google Scholar 

  14. Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas—diagnosis and emerging treatments. Nat Rev Endocrinol 10(7):423–435. doi:10.1038/nrendo.2014.64

    Article  CAS  PubMed  Google Scholar 

  15. Besser GM, Burman P, Daly AF (2005) Predictors and rates of treatment-resistant tumor growth in acromegaly. Eur J Endocrinol 153(2):187–193

    Article  CAS  PubMed  Google Scholar 

  16. Carrasco CA, Gadelha M, Manavela M, Bruno OD (2013) Aggressive tumors and difficult choices in acromegaly. Pituitary 17(S1):24–29. doi:10.1007/s11102-013-0538-5

    Article  PubMed Central  Google Scholar 

  17. Buchfelder M (2008) Management of aggressive pituitary adenomas: current treatment strategies. Pituitary 12(3):256–260. doi:10.1007/s11102-008-0153-z

    Article  Google Scholar 

  18. Sav A, Rotondo F, Syro LV, Di Ieva A, Cusimano MD, Kovacs K (2015) Invasive, atypical and aggressive pituitary adenomas and carcinomas. Endocrin Metab Clin 44(1): 99–104. doi:10.1016/j.ecl.2014.10.008

    Article  Google Scholar 

  19. Cuevas-Ramos D, Carmichael JD, Cooper O, Bonert VS, Gertych A, Mamelak AN, Melmed S (2015) A structural and functional acromegaly classification. J Clin Endocr Metab 100(1):122–131. doi:10.1210/jc.2014-2468

    Article  CAS  PubMed  Google Scholar 

  20. Bourdelot A, Coste J, Hazebroucq V, Gaillard S, Cazabat L, Bertagna X, Bertherat J (2004) Clinical, hormonal and magnetic resonance imaging (MRI) predictors of transsphenoidal surgery outcome in acromegaly. Eur J Endocrinol 150(6):763–771

    Article  CAS  PubMed  Google Scholar 

  21. Kiseljak-Vassiliades K, Xu M, Mills TS, Smith EE, Silveira LJ, Lillehei KO, Kerr JM, Kleinschmidt-DeMasters BK, Wierman ME (2015) Differential somatostatin receptor (SSTR) 1–5 expression and downstream effectors in histologic subtypes of growth hormone pituitary tumors. Mol Cell Endocrinol 417: 73–83. doi:10.1016/j.mce.2015.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beauregard C, Truong U, Hardy J, Serri O (2003) Long-term outcome and mortality after transsphenoidal adenomectomy for acromegaly. Clin Endocrinol 58(1):86–91

    Article  Google Scholar 

  23. Minniti G, Jaffrain-Rea ML, Esposito V, Santoro A, Tamburrano G, Cantore G (2003) Evolving criteria for post-operative biochemical remission of acromegaly: can we achieve a definitive cure? An audit of surgical results on a large series and a review of the literature. Endocr Relat Cancer 10(4):611–619

    Article  CAS  PubMed  Google Scholar 

  24. Sughrue ME, Chang EF, Gabriel RA, Aghi MK, Blevins LS (2011) Excess mortality for patients with residual disease following resection of pituitary adenomas. Pituitary 14(3):276–283. doi:10.1007/s11102-011-0308-1

    Article  PubMed  Google Scholar 

  25. Fernandez-Rodriguez E, Casanueva FF, Bernabeu I (2014) Update on prognostic factors in acromegaly: is a risk score possible? Pituitary 18(3):431–440. doi:10.1007/s11102-014-0574-9

    Article  Google Scholar 

  26. Sarkar S, Chacko AG, Chacko G (2014) An analysis of granulation patterns, MIB-1 proliferation indices and p53 expression in 101 patients with acromegaly. Acta Neurochir 156(12):2221–2230. doi:10.1007/s00701-014-2230-6

    Article  PubMed  Google Scholar 

  27. Melmed S, Casanueva FF, Klibanski A, Bronstein MD, Chanson P, Lamberts SW, Strasburger CJ, Wass JAH, Giustina A (2012) A consensus on the diagnosis and treatment of acromegaly complications. Pituitary 16(3):294–302. doi:10.1007/s11102-012-0420-x

    Article  PubMed Central  Google Scholar 

  28. Laws ER, Vance ML, Thapar K (2000) Pituitary surgery for the management of acromegaly. Horm Res 53 Suppl 3:71–75. doi:10.1159/000023538

  29. Zada G, Du R, Laws ER (2011) Defining the “edge of the envelope”: patient selection in treating complex sellar-based neoplasms via transsphenoidal versus open craniotomy. J Neurosurg 114(2):286–300. doi:10.3171/2010.8.jns10520

    Article  PubMed  Google Scholar 

  30. Schwyzer L, Starke RM, Jane JA, Oldfield EH (2015) Percent reduction of growth hormone levels correlates closely with percent resected tumor volume in acromegaly. J Neurosurg 122(4):798–802. doi:10.3171/2014.10.jns14496

    Article  CAS  PubMed  Google Scholar 

  31. Colao A, Grasso LFS, Pivonello R, Lombardi G (2011) Therapy of aggressive pituitary tumors. Expert Opin Pharmaco 12(10):1561–1570. doi:10.1517/14656566.2011.568478

    Article  CAS  Google Scholar 

  32. Salaun C, Foubert L, Vialatou M, Kujas M, Turpin G (1999) Prognostic factors in the surgical management of acromegaly. Ann Med Interne (Paris) 150(3):195–198

    CAS  Google Scholar 

  33. Nishioka H, Fukuhara N, Horiguchi K, Yamada S (2014) Aggressive transsphenoidal resection of tumors invading the cavernous sinus in patients with acromegaly: predictive factors, strategies, and outcomes. J Neurosurg 121(3):505–510. doi:10.3171/2014.3.jns132214

    Article  PubMed  Google Scholar 

  34. Hagiwara A, Inoue Y, Wakasa K, Haba T, Tashiro T, Miyamoto T (2003) Comparison of growth hormone–producing and non–growth hormone–producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228(2):533–538. doi:10.1148/radiol.2282020695

    Article  PubMed  Google Scholar 

  35. Zada G, Lin N, Laws ER (2010) Patterns of extrasellar extension in growth hormone–secreting and nonfunctional pituitary macroadenomas. Neurosurg Focus 29(4):E4. doi:10.3171/2010.7.focus10155

    Article  PubMed  Google Scholar 

  36. Smith TR, Hulou MM, Huang KT, Nery B, de Moura SM, Cote DJ, Laws ER (2015) Complications after transsphenoidal surgery for patients with Cushing’s disease and silent corticotroph adenomas. Neurosurg Focus 38(2):E12. doi:10.3171/2014.10.focus14705

    Article  PubMed  Google Scholar 

  37. Zada G, Sivakumar W, Fishback D, Singer PA, Weiss MH (2010) Significance of postoperative fluid diuresis in patients undergoing transsphenoidal surgery for growth hormone–secreting pituitary adenomas. J Neurosurg 112(4):744–749. doi:10.3171/2009.7.jns09438

    Article  CAS  PubMed  Google Scholar 

  38. Ciric I, Ragin A, Baumgartner C, Pierce D (1997) Complications of transsphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery 40(2):225–236 (discussion 236–227)

    Article  CAS  PubMed  Google Scholar 

  39. Mooney MA, Simon ED, Little AS (2016) Advancing treatment of pituitary adenomas through targeted molecular therapies: the acromegaly and cushing disease paradigms. Front Surg 3:45. doi:10.3389/fsurg.2016.00045

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bronstein MD (2006) Acromegaly: molecular expression of somatostatin receptor subtypes and treatment outcome. Front Horm Res 35:129–134. doi:10.1159/000094315

    Article  CAS  PubMed  Google Scholar 

  41. Lim DST, Fleseriu M (2016) The role of combination medical therapy in the treatment of acromegaly. Pituitary. doi:10.1007/s11102-016-0737-y

    PubMed  Google Scholar 

  42. Colao A, Auriemma RS, Pivonello R, Kasuki L, Gadelha MR (2015) Interpreting biochemical control response rates with first-generation somatostatin analogues in acromegaly. Pituitary 19(3):235–247. doi:10.1007/s11102-015-0684-z

    Article  PubMed Central  Google Scholar 

  43. Carmichael JD, Bonert VS, Nuño M, Ly D, Melmed S (2014) Acromegaly clinical trial methodology impact on reported biochemical efficacy rates of somatostatin receptor ligand treatments: a meta-analysis. J Clin Endocr Metab 99(5):1825–1833. doi:10.1210/jc.2013-3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Colao A, Auriemma RS, Lombardi G, Pivonello R (2011) Resistance to somatostatin analogs in acromegaly. Endocr Rev 32(2):247–271. doi:10.1210/er.2010-0002

    Article  CAS  PubMed  Google Scholar 

  45. Giustina A, Mazziotti G, Torri V, Spinello M, Floriani I, Melmed S (2012) Meta-analysis on the effects of octreotide on tumor mass in acromegaly. PLoS One 7(5):e36411. doi:10.1371/journal.pone.0036411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Colao A, Auriemma RS, Pivonello R (2015) The effects of somatostatin analogue therapy on pituitary tumor volume in patients with acromegaly. Pituitary 19(2):210–221. doi:10.1007/s11102-015-0677-y

    Article  PubMed Central  Google Scholar 

  47. Bronstein MD, Fleseriu M, Neggers S, Colao A, Sheppard M, Gu F, Shen C-C, Gadelha M, Farrall AJ, Hermosillo Reséndiz K, Ruffin M, Chen Y, Freda P (2016) Switching patients with acromegaly from octreotide to pasireotide improves biochemical control: crossover extension to a randomized, double-blind, Phase III study. BMC Endocr Disord 16(1):16. doi:10.1186/s12902-016-0096-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sandret L, Maison P, Chanson P (2011) Place of cabergoline in acromegaly: a meta-analysis. J Clin Endocr Metab 96(5):1327–1335. doi:10.1210/jc.2010-2443

    Article  CAS  PubMed  Google Scholar 

  49. Suda K, Inoshita N, Iguchi G, Fukuoka H, Takahashi M, Nishizawa H, Yamamoto M, Yamada S, Takahashi Y (2013) Efficacy of combined octreotide and cabergoline treatment in patients with acromegaly: a retrospective clinical study and review of the literature. Endocr J 60(4):507–515

    CAS  PubMed  Google Scholar 

  50. Vilar L, Azevedo MF, Naves LA, Casulari LA, Albuquerque JL, Montenegro RM, Montenegro RM, Figueiredo P, Nascimento GC, Faria MS (2010) Role of the addition of cabergoline to the management of acromegalic patients resistant to longterm treatment with octreotide LAR. Pituitary 14(2):148–156. doi:10.1007/s11102-010-0272-1

    Article  Google Scholar 

  51. Feenstra J, de Herder WW, Ten Have S, van den Beld AW, Feelders RA, Janssen J, van der Lely AJ (2005) Combined therapy with somatostatin analogues and weekly pegvisomant in active acromegaly. Lancet 365(9471):1644–1646. doi:10.1016/s0140-6736(05)63011-5

    Article  CAS  PubMed  Google Scholar 

  52. Neggers SJCMM, Franck SE, de Rooij FWM, Dallenga AHG, Poublon RML, Feelders RA, Janssen JAMJL, Buchfelder M, Hofland LJ, Jørgensen JOL, van der Lely AJ (2014) Long-term efficacy and safety of pegvisomant in combination With long-acting somatostatin analogs in acromegaly. J Clin Endocr Metab 99(10):3644–3652. doi:10.1210/jc.2014-2032

    Article  CAS  PubMed  Google Scholar 

  53. Auriemma RS, Grasso LFS, Galdiero M, Galderisi M, Pivonello C, Simeoli C, De Martino MC, Ferrigno R, Negri M, de Angelis C, Pivonello R, Colao A (2016) Effects of long-term combined treatment with somatostatin analogues and pegvisomant on cardiac structure and performance in acromegaly. Endocr. doi:10.1007/s12020-016-0995-5

    Google Scholar 

  54. Lindberg-Larsen R, Møller N, Schmitz O, Nielsen S, Andersen M, Ørskov H, Jørgensen JOL (2007) The impact of pegvisomant treatment on substrate metabolism and insulin sensitivity in patients with acromegaly. J Clin Endocr Metab 92(5):1724–1728. doi:10.1210/jc.2006-2276

    Article  CAS  PubMed  Google Scholar 

  55. Carlsen SM, Lund-Johansen M, Schreiner T, Aanderud S, Johannesen Ø, Svartberg J, Cooper JG, Hald JK, Fougner SL, Bollerslev J (2008) Preoperative octreotide treatment in newly diagnosed acromegalic patients with macroadenomas increases cure short-term postoperative rates: a prospective, randomized trial. J Clin Endocr Metab 93(8):2984–2990. doi:10.1210/jc.2008-0315

    Article  CAS  PubMed  Google Scholar 

  56. Raverot G, Castinetti F, Jouanneau E, Morange I, Figarella-Branger D, Dufour H, Trouillas J, Brue T (2012) Pituitary carcinomas and aggressive pituitary tumours: merits and pitfalls of temozolomide treatment. Clin Endocrinol 76(6):769–775. doi:10.1111/j.1365-2265.2012.04381.x

    Article  CAS  Google Scholar 

  57. Bengtsson D, Schrøder HD, Andersen M, Maiter D, Berinder K, Feldt Rasmussen U, Rasmussen ÅK, Johannsson G, Hoybye C, van der Lely AJ, Petersson M, Ragnarsson O, Burman P (2015) Long-term outcome and mgmt as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocr Metab 100(4):1689–1698. doi:10.1210/jc.2014-4350

    Article  CAS  PubMed  Google Scholar 

  58. Rowland NC, Aghi MK (2010) Radiation treatment strategies for acromegaly. Neurosurg Focus 29(4):E12. doi:10.3171/2010.7.focus10124

    Article  PubMed  Google Scholar 

  59. Cozzi R, Barausse M, Asnaghi D, Dallabonzana D, Lodrini S, Attanasio R (2001) Failure of radiotherapy in acromegaly. Eur J Endocrinol 145(6):717–726

    Article  CAS  PubMed  Google Scholar 

  60. Kreutzer J, Vance ML, Lopes MBS, Laws ER (2001) Surgical management of GH-secreting pituitary adenomas: an outcome study using modern remission criteria. J Clin Endocr Metab 86(9):4072–4077. doi:10.1210/jcem.86.9.7819

    Article  CAS  PubMed  Google Scholar 

  61. Adler JR, Gibbs IC, Puataweepong P, Chang SD (2008) Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 62(Supplement 2):733–743. doi:10.1227/01.neu.0000316277.14748.63

    Article  PubMed  Google Scholar 

  62. Lee C-C, Vance ML, Lopes MB, Xu Z, Chen C-J, Sheehan J (2014) Stereotactic radiosurgery for acromegaly: outcomes by adenoma subtype. Pituitary 18(3):326–334. doi:10.1007/s11102-014-0578-5

    Article  Google Scholar 

  63. Ježková J, Marek J, Hána V, Kršek M, Weiss V, Vladyka V, Lišák R, Vymazal J, Pecen L (2006) Gamma knife radiosurgery for acromegaly ? long-term experience. Clin Endocrinol 64(5):588–595. doi:10.1111/j.1365-2265.2006.02513.x

    Article  Google Scholar 

  64. Stapleton CJ, Liu CY, Weiss MH (2010) The role of stereotactic radiosurgery in the multimodal management of growth hormone–secreting pituitary adenomas. Neurosurg Focus 29(4):E11. doi:10.3171/2010.7.focus10159

    Article  PubMed  Google Scholar 

  65. Yang I, Kim W, De Salles A, Bergsneider M (2010) A systematic analysis of disease control in acromegaly treated with radiosurgery. Neurosurg Focus 29(4):E13. doi:10.3171/2010.7.focus10170

    Article  PubMed  Google Scholar 

  66. Landolt AM, Haller D, Lomax N, Scheib S, Schubiger O, Siegfried J, Wellis G (2000) Octreotide may act as a radioprotective agent in acromegaly. J Clin Endocr Metab 85(3):1287–1289. doi:10.1210/jcem.85.3.6464

    Article  CAS  PubMed  Google Scholar 

  67. Abu Dabrh AM, Asi N, Farah WH, Mohammed K, Wang Z, Farah MH, Prokop LJ, Katznelson L, Murad MH (2015) Radiotherapy versus radiosurgery in treating patients with acromegaly: a systematic review and meta-analysis. Endocr Pract 21(8):943–956. doi:10.4158/ep14574.or

    Article  PubMed  Google Scholar 

  68. Pollock BE, Cochran J, Natt N, Brown PD, Erickson D, Link MJ, Garces YI, Foote RL, Stafford SL, Schomberg PJ (2008) Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol Biol Phys 70(5):1325–1329. doi:10.1016/j.ijrobp.2007.08.018

    Article  PubMed  Google Scholar 

  69. Evans DGR (2005) Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet 43(4):289–294. doi:10.1136/jmg.2005.036319

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rowe J, Grainger A, Walton L, Silcocks P, Radatz M, Kemeny A (2007) Risk of malignancy after gamma knife stereotactic radiosurgery. Neurosurgery 60(1):60–66. doi:10.1227/01.neu.0000255492.34063.32

    Article  PubMed  Google Scholar 

  71. Zada G, Woodmansee WW, Ramkissoon S, Amadio J, Nose V, Laws ER (2011) Atypical pituitary adenomas: incidence, clinical characteristics, and implications. J Neurosurg 114(2):336–344. doi:10.3171/2010.8.jns10290

    Article  PubMed  Google Scholar 

  72. Miermeister CP, Petersenn S, Buchfelder M, Fahlbusch R, Lüdecke DK, Hölsken A, Bergmann M, Knappe HU, Hans VH, Flitsch J, Saeger W, Buslei R (2015) Histological criteria for atypical pituitary adenomas—data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol Commun 3(1):50. doi:10.1186/s40478-015-0229-8

    Article  PubMed  PubMed Central  Google Scholar 

  73. Syro LV, Rotondo F, Ramirez A, Di Ieva A, Sav MA, Restrepo LM, Serna CA, Kovacs K (2015) Progress in the diagnosis and classification of pituitary adenomas. Front Endocrinol 6:97. doi:10.3389/fendo.2015.00097

    Article  Google Scholar 

  74. Chiloiro S, Doglietto F, Trapasso B, Iacovazzo D, Giampietro A, Di Nardo F, de Waure C, Lauriola L, Mangiola A, Anile C, Maira G, De Marinis L, Bianchi A (2015) Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology 101(2):143–150. doi:10.1159/000375448

    Article  CAS  PubMed  Google Scholar 

  75. Tortosa F, Webb SM (2015) Atypical pituitary adenomas: 10 years of experience in a reference centre in Portugal. Neurologia. doi:10.1016/j.nrl.2015.06.010

    PubMed  Google Scholar 

  76. Iuchi S, Saeki N, Uchino Y, Higuchi Y, Tatsuno I, Nakamura S, Yasuda T, Yamaura A (2000) Cavernous sinus invasion and tumor proliferative potential of growth hormone-producing pituitary tumors. Endocr J 47 Suppl:S77–79

    Google Scholar 

  77. Amirjmshidi A, Alimohamadi M, Ownagh V, Mahouzi L, Ostovar A, Abbassioun K (2014) The impact of immunohistochemical markers of Ki-67 and p53 on the long-term outcome of growth hormone-secreting pituitary adenomas: a cohort study. Asian J Neurosurg 9(3):130. doi:10.4103/1793-5482.142732

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fusco A, Zatelli MC, Bianchi A, Cimino V, Tilaro L, Veltri F, Angelini F, Lauriola L, Vellone V, Doglietto F, Ambrosio MR, Maira G, Giustina A, degli Uberti EC, Pontecorvi A, De Marinis, L (2008) Prognostic significance of the Ki-67 labeling index in growth hormone-secreting pituitary adenomas. J Clin Endocr Metab 93(7):2746–2750. doi:10.1210/jc.2008-0126

    Article  CAS  PubMed  Google Scholar 

  79. Mori R, Inoshita N, Takahashi-Fujigasaki J, Joki T, Nishioka H, Abe T, Fujii T, Yamada S (2013) Clinicopathological features of growth hormone-producing pituitary adenomas in 242 acromegaly patients: classification according to hormone production and cytokeratin distribution. ISRN Endocrinol 2013:1–8. doi:10.1155/2013/723432

    Article  Google Scholar 

  80. Fleseriu M, Cuevas-Ramos D (2016) Pasireotide: a novel treatment for patients with acromegaly. Drug Des Devel Ther 10:227. doi:10.2147/dddt.s77999

    Article  PubMed  PubMed Central  Google Scholar 

  81. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER Jr (1996) p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery 38(4):765–770 (discussion 770–761)

    Article  CAS  PubMed  Google Scholar 

  82. Chesnokova V, Melmed S (2010) Pituitary senescence: the evolving role of Pttg. Mol Cell Endocrinol 326(1–2):55–59. doi:10.1016/j.mce.2010.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roche M, Wierinckx A, Croze S, Rey C, Legras-Lachuer C, Morel A-P, Fusco A, Raverot G, Trouillas J, Lachuer J (2015) Deregulation of miR-183 and KIAA0101 in aggressive and malignant pituitary tumors. Front Med (Lausanne) 2:54. doi:10.3389/fmed.2015.00054

    Google Scholar 

  84. Luque RM, Ibáñez-Costa A, Neto LV, Taboada GF, Hormaechea-Agulla D, Kasuki L, Venegas-Moreno E, Moreno-Carazo A, Gálvez MÁ, Soto-Moreno A, Kineman RD, Culler MD, Gahete MD, Gadelha MR, Castaño JP (2015) Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas. Cancer Lett 359(2):299–306. doi:10.1016/j.canlet.2015.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gahete MD, Rincón-Fernández D, Durán-Prado M, Hergueta-Redondo M, Ibáñez-Costa A, Rojo-Sebastián A, Gracia-Navarro F, Culler MD, Casanovas O, Moreno-Bueno G, Luque RM, Castaño JP (2016) The truncated somatostatin receptor sst5TMD4 stimulates the angiogenic process and is associated to lymphatic metastasis and disease-free survival in breast cancer patients. Oncotarget. doi:10.18632/oncotarget.11076

    Google Scholar 

  86. Marina D, Burman P, Klose M, Casar-Borota O, Luque RM, Castaño JP, Feldt-Rasmussen U (2015) Truncated somatostatin receptor 5 may modulate therapy response to somatostatin analogues — observations in two patients with acromegaly and severe headache. Growth Horm IGF Res 25(5):262–267. doi:10.1016/j.ghir.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  87. Durán-Prado M, Saveanu A, Luque RM, Gahete MD, Gracia-Navarro F, Jaquet P, Dufour H, Malagón MM, Culler MD, Barlier A, Castaño JP (2010) A potential Inhibitory role for the new truncated variant of somatostatin receptor 5, sst5TMD4, in pituitary adenomas poorly responsive to somatostatin analogs. J Clin Endocr Metab 95(5):2497–2502. doi:10.1210/jc.2009-2247

    Article  PubMed  Google Scholar 

  88. Sampedro-Nunez M, Luque RM, Ramos-Levi AM, Gahete MD, Serrano-Somavilla A, Villa-Osaba A, Adrados M, Ibanez-Costa A, Martin-Perez E, Culler MD, Marazuela M, Castano JP (2016) Presence of sst5TMD4, a truncated splice variant of the somatostatin receptor subtype 5, is associated to features of increased aggressiveness in pancreatic neuroendocrine tumors. Oncotarget 7(6):6593–6608. doi:10.18632/oncotarget.6565

    PubMed  Google Scholar 

  89. Puig-Domingo M, Luque RM, Reverter JL, Lopez-Sanchez LM, Gahete MD, Culler MD, Diaz-Soto G, Lomena F, Squarcia M, Mate JL, Mora M, Fernandez-Cruz L, Vidal O, Alastrue A, Balibrea J, Halperin I, Mauricio D, Castano JP (2014) The truncated isoform of somatostatin receptor5 (sst5TMD4) is associated with poorly differentiated thyroid cancer. PLoS One 9(1):e85527. doi:10.1371/journal.pone.0085527

    Article  PubMed  PubMed Central  Google Scholar 

  90. Obari A, Sano T, Ohyama K, Kudo E, Qian ZR, Yoneda A, Rayhan N, Mustafizur Rahman M, Yamada S (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19(2):82–91. doi:10.1007/s12022-008-9029-z

    Article  PubMed  Google Scholar 

  91. Makin CA, Bobrow LG, Bodmer WF (1984) Monoclonal antibody to cytokeratin for use in routine histopathology. J Clin Pathol 37(9):975–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mayr B, Buslei R, Theodoropoulou M, Stalla GK, Buchfelder M, Schofl C (2013) Molecular and functional properties of densely and sparsely granulated GH-producing pituitary adenomas. Eur J Endocrinol 169(4):391–400. doi:10.1530/eje-13-0134

    Article  CAS  PubMed  Google Scholar 

  93. Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7(5):257–266. doi:10.1038/nrendo.2011.40

    Article  CAS  PubMed  Google Scholar 

  94. Melmed S, Braunstein GD, Horvath EVA, Ezrin C, Kovacs K (1983) Pathophysiology of acromegaly*. Endocr Rev 4(3):271–290. doi:10.1210/edrv-4-3-271

    Article  CAS  PubMed  Google Scholar 

  95. Mazal PR, Czech T, Sedivy R, Aichholzer M, Wanschitz J, Klupp N, Budka H (2001) Prognostic relevance of intracytoplasmic cytokeratin pattern, hormone expression profile, and cell proliferation in pituitary adenomas of akromegalic patients. Clin Neuropathol 20(4):163–171

    CAS  PubMed  Google Scholar 

  96. Bakhtiar Y, Hirano H, Arita K, Yunoue S, Fujio S, Tominaga A, Sakoguchi T, Sugiyama K, Kurisu K, Yasufuku-Takano J, Takano K (2010) Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur J Endocrinol 163(4):531–539. doi:10.1530/eje-10-0586

    Article  CAS  PubMed  Google Scholar 

  97. Fougner SL, Casar-Borota O, Heck A, Berg JP, Bollerslev J (2012) Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin Endocrinol 76(1):96–102. doi:10.1111/j.1365-2265.2011.04163.x

    Article  CAS  Google Scholar 

  98. Kiseljak-Vassiliades K, Carlson NE, Borges MT, Kleinschmidt-DeMasters BK, Lillehei KO, Kerr JM, Wierman ME (2014) Growth hormone tumor histological subtypes predict response to surgical and medical therapy. Endocr 49(1):231–241. doi:10.1007/s12020-014-0383-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Carmichael.

Ethics declarations

Conflict of interest

John Carmichael is a principal investigator for and USC has received grants for research from Novartis, Chiasma, and Pfizer. Dr. Carmichael has also served as an advisory board member for Chiasma, Novartis, and Pfizer.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donoho, D.A., Bose, N., Zada, G. et al. Management of aggressive growth hormone secreting pituitary adenomas. Pituitary 20, 169–178 (2017). https://doi.org/10.1007/s11102-016-0781-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-016-0781-7

Keywords

Navigation