Skip to main content

Advertisement

Log in

Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Bacillus genus comprises an important number of species which produce a wide range of secondary metabolites displaying a broad spectrum of activity and great structural diversity. The genome sequences of an important number of species have been published and a large number of orphan genes reported. This review, covering all the literature in this field up to end of 2011, summarizes and compares the genetic potential of these organisms from the point of view of bioactive nonribosomal peptide production and their application as antibiotics, plant pathogen biocontrol, promotion of plant growth, etc. The biological and structural studies of the peptides isolated from Bacillus species are revised and some aspects of the biosynthesis of these metabolites and related compounds are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN (2009) Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 131(35):12682–12692

    PubMed  CAS  Google Scholar 

  • Abraham GF (1965) Production and purification of bacilysin. Biochem J 97(2):573–578

    PubMed  Google Scholar 

  • Abriouel H, Franz CMAP, Ben Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    PubMed  CAS  Google Scholar 

  • Agata N, Mori M, Ohta M, Suwan S, Ohtani I, Isobe M (1994) A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol Lett 121(1):31–34

    PubMed  CAS  Google Scholar 

  • Alcaraz LD, Olmedo G, Bonilla G, Cerritos R, Hernández G, Cruz A, Ramírez E, Putonti C, Jiménez B, Martínez E, López V, Arvizu JL, Ayala F, Razo F, Caballero J, Siefert J, Eguiarte L, Vielle J-P, Martínez O, Souza V, Herrera-Estrella A, Herrera-Estrella L (2008) The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc Natl Acad Sci USA 105:5803–5808

    PubMed  CAS  Google Scholar 

  • Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G (2010) Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics 11:332

    PubMed  Google Scholar 

  • Andersen RJ, Kelly MT, Barsby TA (2002) Peptide antibiotics. US Pat. US 2002035239 A1 20020321

  • Anderson I, Sorokin A, Kapatral V, Reznik G, Bhattacharya A, Mikhailova N, Burd H, Joukov V, Kaznadzey D, Walunas T, Souza M, Larsen N, Pusch G, Liolios K, Grechkin Y, Lapidus A, Goltsman E, Chu L, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N, Ivanova N (2005) Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis. FEMS Microbiol Lett 250:175–184

    PubMed  CAS  Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713(1):51–56

    CAS  Google Scholar 

  • Argüelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63

    PubMed  Google Scholar 

  • Arnesen LPS, Fagerlund A, Granum PE (2008) Fromsoil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108(2):386–395

    PubMed  CAS  Google Scholar 

  • Assie LK, Deleu M, Arnaud L, Paquot M, Thonart P, Gaspar Ch, Haubruge E (2002) Insecticide activity of surfactins and iturins from a biopesticide Bacillus subtilis Cohn (S499 strain). Biol Wet 67(3):647–655

    CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    PubMed  CAS  Google Scholar 

  • Barnes EM (1949) Laterosporin A and laterosporin B antibiotics produced by Bacillus laterosporus. Br J Exp Pathol 30:100–104

    PubMed  CAS  Google Scholar 

  • Barsby T, Kelly MT, Gagne SM, Andersen RJ, Bogorol A (2001) Produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org Lett 3(3):437–440

    PubMed  CAS  Google Scholar 

  • Barsby T, Kelly MT, Andersen RJ (2002) Tupuseleiamides and basiliskamides, new acyldipeptides and antifungal polyketides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. J Nat Prod 65(10):1447–1451

    PubMed  CAS  Google Scholar 

  • Barsby T, Warabi K, Sorensen D, Zimmerman WT, Kelly MT, Andersen RJ (2006) The bogorol family of antibiotics: template-based structure elucidation and a new approach to positioning enantiomeric pairs of amino acids. J Org Chem 71(16):6031–6037

    PubMed  CAS  Google Scholar 

  • Besson F, Michel G (1987) Isolation and characterization of new iturins: iturin D and iturin E. J Antibiot 40(4):437–442

    PubMed  CAS  Google Scholar 

  • Besson F, Michel G (1990) Mycosubtilins B and C: minor antibiotics from mycosubtilin-producer Bacillus subtilis. Microbios 62(251):93–99

    PubMed  CAS  Google Scholar 

  • Besson F, Peypoux F, Michel G, Delcambe L (1976) Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J Antibiot 29(10):1043–1049

    PubMed  CAS  Google Scholar 

  • Besson F, Peypoux F, Michel G, Delcambe L (1977) The structure of bacillomycin L, an antibiotic from Bacillus subtilis. Eur J Biochem 77(1):61–67

    PubMed  CAS  Google Scholar 

  • Besson F, Quentin MJ, Michel G (1989) Action of mycosubtilin on erythrocytes and artificial membranes. Microbios 59(240–241):137–143

    PubMed  CAS  Google Scholar 

  • Bhattacharjya S, David SA, Mathan VI, Balaram P (1997) Polymyxin B nonapeptide: conformations in water and in the lipopolysaccharide-bound state determined by two-dimensional NMR and molecular dynamics biopolymers. Biopolymers 41:251–265

    CAS  Google Scholar 

  • Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230

    PubMed  CAS  Google Scholar 

  • Borisova SA, Circello BT, Zhang JK, van der Donk WA, Metcalf WW (2010) Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chem Biol 17(1):28–37

    PubMed  CAS  Google Scholar 

  • Borowski J, Borowski E, Ciepat A, Dzierzanowska D, Jakubicz P, Smorczewski A (1977a) Elimination of plasmids determining bacterial antibiotic resistance by edeine. Drugs Exp Clin Res 3:189–191

    CAS  Google Scholar 

  • Borowski J, Jakoniuk P, Borowski E (1977b) Edeine as an immunosuppressive agent. Drugs Exp Clin Res 3:183–188

    CAS  Google Scholar 

  • Borysiewicz J (1966) Effect of various inhibitors of protein and deoxyribonucleic acid synthesis on the growth of mycoplasmas. Appl Microbiol 14:1049–1050

    PubMed  CAS  Google Scholar 

  • Bozdogan B, Galopin S, Gerbaud G, Courvalin P, Leclercq R (2003) Chromosomal aadD2 encodes an aminoglycoside nucleotidyltransferase in Bacillus clausii. Antimicrob Agents Chemother 47:1343–1346

    PubMed  CAS  Google Scholar 

  • Brownlee G, Bushby SRM, Short EI (1949) Comparative biological studies of polymyxin A and D. Ann N Y Acad Sci 51:891–896

    PubMed  CAS  Google Scholar 

  • Byers BR, Powell MV, Lankford CE (1967) Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol 93(1):286–294

    PubMed  CAS  Google Scholar 

  • Calderone ChT, Kowtoniuk WE, Kelleher NL, Walsh ChT, Dorrestein PC (2006) Convergence of isoprene and polyketide biosynthetic machinery: isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc Natl Acad Sci USA 103(24):8977–8982

    PubMed  CAS  Google Scholar 

  • Cerritos R, Vinuesa P, Eguiarte LE, Herrera-Estrella L, Alcaraz-Peraza LD, Arvizu-Gómez JL, Olmedo G, Ramírez E, Siefert JL, Souza V (2008) Bacillus coahuilensis sp. nov., a moderately halophilic species from a desiccation lagoon in the Cuatro Ciénegas Valley in Coahuila, Mexico. Int J Syst Evol Microbiol 58:919–923

    PubMed  CAS  Google Scholar 

  • Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O et al (2007) The complete genome sequence of Bacillus thuringiensis Al Hakam. J Bacteriol 189:3680–3681

    PubMed  CAS  Google Scholar 

  • Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    PubMed  CAS  Google Scholar 

  • Charbonneau DL, Buchanan W, Donovan-Brand RJ (1998) Polymyxin A, B, C, D, or E containing compositions for the treatment of periodontal disease, plaque and breath malodor. Brit. UK Patent GB 2319726

  • Chen X-H, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Suessmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    PubMed  CAS  Google Scholar 

  • Chen X-H, Koumoutsi A, Scholz R, Borriss R (2009a) More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens. J Mol Microbiol Biotechnol 16:14–24

    PubMed  CAS  Google Scholar 

  • Chen X-H, Scholz R, Borriss M, Junge H, Moegel G, Kunz S, Borriss R (2009b) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140:38–44

    PubMed  CAS  Google Scholar 

  • Chen X-H, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009c) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37

    PubMed  CAS  Google Scholar 

  • Chmara H, Borowski E (1968) Antibiotic edeine: VII. Biological activity of edeine A and B. Acta Microbiol Pol 17:59–66

    PubMed  CAS  Google Scholar 

  • Chmara H, Borowski E (1973) Antibiotic tetaine, a new inhibitor of murein precursor’s synthesis in Escherichia coli K-12. Biochem Biophys Res Commun 52(4):1381–1387

    PubMed  CAS  Google Scholar 

  • Chmara H, Smulkowski M, Borowski E (1980) Growth inhibitory effect of amidotransferase inhibition in Candida albicans by epoxypeptides. Drugs Exp Clin Res 6:7–14

    CAS  Google Scholar 

  • Clark JB, Munnecke DM, Jenneman GE (1981) In situ microbial enhancement of oil production. Dev Ind Microbiol 22:695–701

    CAS  Google Scholar 

  • Czajgucki Z, Andruszkiewicz R, Kamysz W (2006) Structure activity relationship studies on the antimicrobial activity of novel edeine A and D analogues. J Pept Sci 12:653–662

    PubMed  CAS  Google Scholar 

  • Danders W, Marahiel MA, Krause M, Kosui N, Katom T, Izumiya N, Kleinkauf H (1982) Antibacterial action of gramicidin S and tyrocidines in relation to active transport, in vitro transcription, and spore outgrowth. Antimicrob Agents Chemother 22(5):785–790

    PubMed  CAS  Google Scholar 

  • Davidson B (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291

    CAS  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679

    PubMed  CAS  Google Scholar 

  • Dommel MK, Lücking G, Scherer S, Ehling-Schulz M (2011) Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol 28:284–290

    PubMed  CAS  Google Scholar 

  • Drobniewsk FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338

    Google Scholar 

  • Ehling-Schulz M, Fricker M, Scherer S (2004) Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 48:479–487

    PubMed  Google Scholar 

  • Ehling-Schulz M, Fricker M, Grallert H, Rieck P, Wagner M, Scherer S (2006) Cereulide synthetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 6:20

    PubMed  Google Scholar 

  • Erickson RJ (1976) Industrial applications of the bacilli: a review and prospectus. In: Schlesinger D (ed) Microbiology. ASM Press, Washington, DC, pp 406–419

    Google Scholar 

  • Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot 48(11):1240–1247

    PubMed  CAS  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    PubMed  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496 and references therein cited

    PubMed  CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Ann Rev Phytopathol 43:A337–A359

    Google Scholar 

  • From C, Hormazabal V, Granum PE (2007) Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int J Food Microbiol 115(3):319–324

    PubMed  CAS  Google Scholar 

  • Frueh DP, Arthanari H, Koglin A, Vosburg DA, Bennett AE, Walsh CT, Wagner G (2008) Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903–906

    PubMed  CAS  Google Scholar 

  • Fujikawa K, Suketa Y, Hayashi K, Suzuki T (1965) Chemical structure of circulin A. Experientia 21(6):307–308

    PubMed  CAS  Google Scholar 

  • Garner BL, Arceneaux JEL, Byers BR (2004) Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr Microbiol 49(2):89–94

    PubMed  CAS  Google Scholar 

  • Gerard JM, Haden P, Kelly MT, Andersen RJ (1999) Loloatins A-D, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium. J Nat Prod 62(1):80–85

    PubMed  CAS  Google Scholar 

  • Grangemard I, Bonmatin JM, Bernillon J, Das BC, Peypoux F (1999) Lichenysin G, novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: production, isolation and structural evaluation by NMR and mass spectrometry. J Antibiot 52:363–373

    PubMed  CAS  Google Scholar 

  • Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lychenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90(3):199–210

    PubMed  CAS  Google Scholar 

  • Hagelin G (2005a) Structure investigation of maltacine B1a, B1b, B2a and B2b: cyclic peptide lactones of the maltacine complex from Bacillus subtilis. J Mass Spectrom 40(4):527–538

    PubMed  CAS  Google Scholar 

  • Hagelin G (2005b) Structure investigation of maltacine C1a, C1b, C2a and C2b: cyclic peptide lactones of the maltacine complex from Bacillus subtilis. J Mass Spectrom 40(10):1276–1286

    PubMed  CAS  Google Scholar 

  • Hagelin G (2005c) Structure investigation of maltacine D1a, D1b and D1c: cyclic peptide lactones of the maltacine complex from Bacillus subtilis. J Mass Spectrom 40(10):1287–1299

    PubMed  CAS  Google Scholar 

  • Hagelin G (2005d) Mass spectrometric investigation of maltacines E1a and E1b—2 members of the maltacine family of peptide antibiotics. Rapid Commun Mass Spectrom 19(24):3633–3642

    PubMed  CAS  Google Scholar 

  • Hagelin G, Indrevoll B, Hoeg-Jensen T (2007) Use of synthetic analogues in confirmation of structure of the peptide antibiotics maltacines. Int J Mass Spectrom 268:254–264

    CAS  Google Scholar 

  • Hamdache A, Lamarti A, Aleu J, Collado IG (2011) Non-peptide metabolites from the genus Bacillus. J Nat Prod 74:893–899

    PubMed  CAS  Google Scholar 

  • Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43(6):1317–1323

    PubMed  CAS  Google Scholar 

  • Harnois I, Maget-Dana R, Ptak M (1989) Methylation of the antifungal lipopeptide iturin A modifies its interaction with lipids. Biochimie 71(1):111–116

    PubMed  CAS  Google Scholar 

  • Harwood CR (1992) Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends Biotechnol 10:247–256

    PubMed  CAS  Google Scholar 

  • Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73–79

    PubMed  CAS  Google Scholar 

  • Hasumi K, Takizawa K, Takahashi F, Park JK, Endo A (1995) Inhibition of Acyl-CoA: cholesterol acyltransferase by isohalobacillin, a complex of novel cyclic acylpeptides produced by Bacillus sp. A1238. J Antibiot 48(12):1419–1424

    PubMed  CAS  Google Scholar 

  • Hathout Y, Ho Y-P, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63(11):1492–1496

    PubMed  CAS  Google Scholar 

  • He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S, Yu Z (2010) Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol 192:4074–4075

    PubMed  CAS  Google Scholar 

  • Hecker M, Voelker U (2004) Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics 4:3727–3750

    PubMed  CAS  Google Scholar 

  • Helgason E, Caugant DA, Olsen I, Kolsto A-B (2000) Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622

    PubMed  CAS  Google Scholar 

  • Hirata F, Axelrod J (1980) Phospholipid methylation and biological signal transmission. Science 209:1082–1090

    PubMed  CAS  Google Scholar 

  • Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW et al (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101:8449–8454

    PubMed  CAS  Google Scholar 

  • Hong HA, Duc L-H, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    PubMed  CAS  Google Scholar 

  • Hu X, Boyer GL (1995) Isolation and characterization of the siderophore N-deoxyschizokinen from Bacillus megaterium ATCC 19213. Biometals 8(4):357–364

    CAS  Google Scholar 

  • Hu X, Boyer GL (1996) Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62(11):4044–4048

    PubMed  CAS  Google Scholar 

  • Hunt A, Rawlins JP, Thomaides HB, Errington J (2006) Functional analysis of 11 putative essential genes in Bacillus subtilis. Microbiology 152:2895–2907

    PubMed  CAS  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    PubMed  CAS  Google Scholar 

  • Ito T (1993) Enzymatic determination of itoic acid, a Bacillus subtilis siderophore, and 2,3-dihydroxybenzoic acid. Appl Environ Microbiol 59(7):2343–2345

    PubMed  CAS  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A et al (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    PubMed  CAS  Google Scholar 

  • Jedrzejas MJ, Huang WJM (2003) Bacillus species proteins involved in spore formation and degradation: from identification in the genome, to sequence analysis, and determination of function and structure. Crit Rev Biochem Mol Biol 38:173–198

    PubMed  CAS  Google Scholar 

  • Jenny K, Deltrieu V, Kappeli O (1993) Lipopeptide production by Bacillus licheniformis. In: Kosaric N (ed) Biosurfactants. Dekker, Inc, New York, pp 135–156

    Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468

    PubMed  CAS  Google Scholar 

  • Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50(3):220–228

    CAS  Google Scholar 

  • Kajimura Y, Sugiyama M, Kaneda M (1995) Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J Antibiot 48(10):1095–1103

    PubMed  CAS  Google Scholar 

  • Kameda Y, Oira S, Matsui K, Kanatomo S, Hase T (1974) Antitumor activity of Bacillus natto V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull 22:938–944

    PubMed  CAS  Google Scholar 

  • Kaminski K, Sokolowska T (1973) Probable identity of bacilysin and tetaine. J Antibiot 26(3):184–185

    PubMed  CAS  Google Scholar 

  • Kaneda M, Kajimura Y (2002) New antifungal antibiotics, bacillopeptins and fusaricidins. Yakugaku Zasshi-J Pharm Soc Jpn 122(9):651–671

    CAS  Google Scholar 

  • Kato T, Shoji J (1976) Studies on antibiotics from the genus Bacillus. XIX. The amino acid sequence of octapeptin C1 (333–25). J Antibiot 29(12):1339–1340

    PubMed  CAS  Google Scholar 

  • Kato T, Shoji J (1980) Studies on antibiotics from the genus Bacillus. XXVIII. The structure of octapeptin D. J Antibiot 33(2):186–191

    PubMed  CAS  Google Scholar 

  • Kato T, Hinoo H, Shoji J (1978) Studies on antibiotics from the genus Bacillus. XXIV. The structure of tridecaptin A. J Antibiot 31(7):652–661

    PubMed  CAS  Google Scholar 

  • Kato T, Sakazaki R, Hinoo H, Shoji J (1979) Studies on antibiotics from the genus Bacillus. XXV. The structures of tridecaptins B and C. J Antibiot 32(4):305–312

    PubMed  CAS  Google Scholar 

  • Keim P, Gruendike JM, Klevytska AM, Schupp JM, Challacombe J, Okinaka R (2009) The genome and variation of Bacillus anthracis. Mol Aspects Med 30:397–405

    PubMed  CAS  Google Scholar 

  • Kelkar DA, Chattopadhyay A (2007) The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 1768:2011–2025

    PubMed  CAS  Google Scholar 

  • Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75(4):1144–1155

    PubMed  CAS  Google Scholar 

  • Kherat DM, Maksimov VN, Zharikova GG (1974) Optimization of the medium for the biosynthesis of esein and bresein using a mathematical experiment design. Biol Nauki 17(1):90–94

    CAS  Google Scholar 

  • Kikuchi T, Hasumi K (2002) Enhancement of plasminogen activation by surfactin C: augmentation of fibrinolysis in vitro and in vivo. Biochim Biophys Acta 1596(2):234–245

    PubMed  CAS  Google Scholar 

  • Kim SD, Park SK, Chon JY, Park HJ, Lim JH, Yun HI, Park SC, Lee KY, Kim SK, Rhee MH (2006) Surfactin C inhibits platelet aggregation. J Pharm Pharmacol 58(6):867–870

    PubMed  CAS  Google Scholar 

  • Kimura Y, Murai E, Fujisawa M, Tatsuki T, Nobue F (1969) Polymyxin P, a new antibiotic of the polymyxin group. J Antibiot 22(9):449–450

    PubMed  CAS  Google Scholar 

  • King TP, Craig LC (1955) The chemistry of tyrocidine. V. The amino acid sequence of tyrocidine B. J Am Chem Soc 77:6627–6631

    CAS  Google Scholar 

  • Kino K, Kotanaka Y, Arai T, Yagasaki M (2009) A novel L-amino acid ligase from Bacillus subtilis NBRC3134, a microorganism producing peptide-antibiotic rhizocticin. Biosci Biotechnol Biochem 73(4):901–907

    PubMed  CAS  Google Scholar 

  • Kline T, Holub D, Therrien J, Leung T, Ryckman D (2001) Synthesis and characterization of the colistin peptide polymixin E1 and related antimicrobial peptides. J Pept Res 57:175–187

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  • Koeppe RE, Paczkowski JA, Whaley WL (1985) Gramicidin K, a new linear channel-forming gramicidin from Bacillus brevis. Biochemistry 24(12):2822–2826

    PubMed  CAS  Google Scholar 

  • Kondejewski LH, Farmer SW, Wishart D, Kay CM, Hancock REW, Hodges RS (1996) Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. J Biol Chem 271:25261–25268

    PubMed  CAS  Google Scholar 

  • Konz D, Marahiel MA (1999) How do peptide synthetases generate structural diversity? Chem Biol 6:39–48

    Google Scholar 

  • Konz D, Doekel S, Marahiel AM (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181:133–140

    PubMed  CAS  Google Scholar 

  • Koppisch AT, Browder CC, Moe AL, Shelley JT, Kinkel BA, Hersman LE, Iyer S, Ruggiero CE (2005) Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals 18:577–585

    PubMed  CAS  Google Scholar 

  • Kotan R, Dikbas N, Bostan H (2009) Biological control of post harvest disease caused by Aspergillus flavus on stored lemon fruits. Afr J Biotechnol 8:209–214

    Google Scholar 

  • Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    PubMed  CAS  Google Scholar 

  • Koumoutsi A, Chen X-H, Vater J, Borriss R (2007) DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl Environ Microbiol 73:6953–6964

    PubMed  CAS  Google Scholar 

  • Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52:613–619

    PubMed  CAS  Google Scholar 

  • Kugler M, Loeffler W, Rapp C, Kern A, Jung G (1990) Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties. Arch Microbiol 153(3):276–281

    PubMed  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    PubMed  CAS  Google Scholar 

  • Kuryło-Borowska Z, Szer W (1972) Inhibition of bacterial DNA synthesis by edeine. Effect on Escherichia coli mutants lacking DNA polymerase I. Biochim Biophys Acta 287:236–245

    PubMed  Google Scholar 

  • Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR, Jones RJ (1966) Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s) (Schizokinen). J Bacteriol 91(3):1070–1079

    PubMed  CAS  Google Scholar 

  • Lebbadi M, Gálvez A, Macqueda M, Martínez-Bueno M, Valdivia E (1994) Fungicin M-4 a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J Appl Bacteriol 77:49–53

    PubMed  CAS  Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    PubMed  CAS  Google Scholar 

  • Lee BH, Miller MJ (1983) Natural ferric ionophores: total synthesis of schizokinen, schizokinen A, and arthrobactin. J Org Chem 48:24–31

    CAS  Google Scholar 

  • Lee S-Ch, Kim S-H, Park I-H, Chung S-Y, Choi Y-L (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillusamyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188(4):307–312

    PubMed  CAS  Google Scholar 

  • Li Y-M, Haddad NIA, Yang S-Z, Mu B-Z (2008) Variants of lipopeptides produced by Bacillus licheniformis HSN221 in different medium components evaluated by a rapid method ESI-MS. Int J Pept Res Ther 14:229–235

    CAS  Google Scholar 

  • Loeffler W, Tschen JSM, Vanittanakom N, Kugler M, Knorpp E, Hsien T-F, Wu MS (1986) Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F-29-3 A comparison with activities of other Bacillus antibiotics. J Phytopathol 115(3):204–213

    CAS  Google Scholar 

  • Logan NA, Popovic T, Hoffmaster A (2007) Bacillus and other aerobic endospore-forming bacteria. In: Murray PR (ed) Manual of clinical microbiology, 9th edn. ASM Press, Washington, DC, pp 455–473

    Google Scholar 

  • Lugtenberg BJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of lipopeptides: biological and properties pore-forming physicochemical. Toxicology 87:151–174

    PubMed  CAS  Google Scholar 

  • Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051

    PubMed  CAS  Google Scholar 

  • Majumdar SK, Bose SK (1960) Amino acid sequence in mycobacillin. Biochem J 74:596–599

    PubMed  CAS  Google Scholar 

  • Makarasen A, Yoza K, Isobe M (2009) Higher structure of cereulide, an emetic toxin from Bacillus cereus, special comparison with valinomycin, an antibiotic from Streptomyces fulvissimus. Chem Asian J 4:688–698

    PubMed  CAS  Google Scholar 

  • Mannanov RN, Sattarova RK (2001) Antibiotics produced by Bacillus bacteria. Chem Nat Compd 37(2):117–123

    CAS  Google Scholar 

  • Marahiel MA (1992) Multidomain enzymes involved in peptide synthesis. FEBS Lett 307:40–43

    PubMed  CAS  Google Scholar 

  • Marahiel MA, Nakano MM, Zuber P (1993) Regulation of peptide antibiotic production in Bacillus. Mol Microbiol 7(5):631–636

    PubMed  CAS  Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2673

    PubMed  CAS  Google Scholar 

  • Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem 278(15):13124–13132

    PubMed  CAS  Google Scholar 

  • McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco A-M, Zazopoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68:493–496

    PubMed  CAS  Google Scholar 

  • McIntosh JA, Donia MS, Schmidt EW (2009) Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 26:537–559

    PubMed  CAS  Google Scholar 

  • Meyers E, Parker WL, Brown WE, Shoji J, Wakisaka Y (1976) A nomenclature proposal for the octapeptin antibiotics. J Antibiot 29(11):1241–1242

    PubMed  CAS  Google Scholar 

  • Mhammedi A, Peypoux F, Besson F, Michel G (1982) Bacillomycin F, a new antibiotic of iturin group: isolation and characterization. J Antibiot 35(3):306–311

    PubMed  CAS  Google Scholar 

  • Michener HD, Snell N (1949) Two antifungal substances from Bacillus subtilis cultures. Arch Biochem 22:208–214

    PubMed  CAS  Google Scholar 

  • Miethke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA (2006) Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 61(6):1413–1427

    PubMed  CAS  Google Scholar 

  • Ming L-J, Epperson JD (2002) Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. J Inorg Biochem 91:46–58

    PubMed  CAS  Google Scholar 

  • Mogi T, Kita K (2009) Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 66(23):3821–3826

    PubMed  CAS  Google Scholar 

  • Moszer I (1998) The complete genome of Bacillus subtilis: from sequence annotation to data management and analysis. FEBS Lett 430:28–36

    PubMed  CAS  Google Scholar 

  • Moyne A-L, Cleveland TE, Tuzun S (2004) Molecular caracterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49

    PubMed  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    PubMed  CAS  Google Scholar 

  • Mullis KB, Pollack JR, Neilands JB (1971) Structure of schizokinen, an iron-transport compound from Bacillus megaterium. Biochemistry 10(26):4894–4898

    PubMed  CAS  Google Scholar 

  • Murai A, Amino Y, Ando T (1985) Absolute configuration of the β-hydroxyl fatty acid constituent of permetin A. J Antibiot 38(11):1610–1613

    PubMed  CAS  Google Scholar 

  • Murray FJ, Tetrault PA, Kaufmann OW, Koffler H, Peterson DH, Colingsworth DR (1949) Circulin, an antibiotic from an organism resembling Bacillus circulans. J Bacteriol 57:305–312

    CAS  Google Scholar 

  • Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics: production, isolation, chemical properties, structure and biological activity. J Antibiot 43(3):267–280

    PubMed  CAS  Google Scholar 

  • Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384

    PubMed  CAS  Google Scholar 

  • Newton GGF (1949) Antibiotics from a strain of Bacillus subtilis: bacilipin A and B and bacilysin. J Exp Pathol 30:306–319

    CAS  Google Scholar 

  • Newton BA (1956) The properties and mode of action of the polymyxins. Bacteriol Rev 20:14–27

    PubMed  CAS  Google Scholar 

  • Nickerson KW, Schnell DJ (1983) Toxicity of cyclic peptide antibiotics to larvae of Aedes aegypti. J Invertebr Pathol 42:407–409

    PubMed  CAS  Google Scholar 

  • Nicolas JP (2003) Molecular dynamics simulation of surfactin molecules at the water hexane interface. Biophys J 85:1377–1391

    PubMed  CAS  Google Scholar 

  • Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986a) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. III. Structural elucidation of plipastatins. J Antibiot 39:755–761

    PubMed  CAS  Google Scholar 

  • Nishikiori T, Naganawa H, Muraoka Y, Aoyagi T, Umezawa H (1986b) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. II. Structure of fatty acid residue and amino acid sequence. J Antibiot 39(6):745–754

    PubMed  CAS  Google Scholar 

  • Obrig T, Irvin J, Culp W, Hardesty B (1971) Inhibition of peptide initiation on reticulocyte ribosomes by edeine. Eur J Biochem 21:31–41

    PubMed  CAS  Google Scholar 

  • Ogawa H, Ito T (1951) Esperin, a new antibiotic. I. Properties and constitution of esperin. Nippon Nogei Kagaku Kaishi 24:191–196

    CAS  Google Scholar 

  • Ollinger J, Song K-B, Antelmann H, Hecker M, Helmann JD (2006) Role of the fur regulon in iron transport in Bacillus subtilis. J Bacteriol 88(10):3664–3673

    Google Scholar 

  • Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6:9–18

    PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    PubMed  CAS  Google Scholar 

  • Otoguro K, Liu ZX, Fukuda K, Li Y, Iwai Y, Tanaka H, Omura S (1988) Screening for new nematocidal substances of microbial origin by a new method using the pine wood nematode. J Antibiot 41:573–575

    PubMed  CAS  Google Scholar 

  • Park JK, Hasumi K, Endo A (1995) Inhibition of the binding of oxidized low density lipoprotein to the macrophages by iturin C-related compounds. J Antibiot 48(3):226–232

    PubMed  CAS  Google Scholar 

  • Parker WL, Rathnum ML (1975) EM49, a new peptide antibiotic. IV. Structure of EM49. J Antibiot 28(5):379–389

    PubMed  CAS  Google Scholar 

  • Parker WL, Rathnum ML, Dean LD, Nimeck MW, Brown WE, Meyers E (1977) Polymyxin F, a new peptide antibiotic. J Antibiot 30:767–769

    PubMed  CAS  Google Scholar 

  • Pavli V, Kmetec V (2006) Pathways of chemical degradation of polypeptide antibiotic bacitracin. Biol Pharm Bull 29(11):2160–2167

    PubMed  CAS  Google Scholar 

  • Pereira de Melo FM, Fiore MF, Beraldo de Moraes LA, Silva-Stenico ME, Seramin Sh, Teixeira MA, Soares de Melo I (2009) Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4A. Sci Agric 66(5):583–592

    CAS  Google Scholar 

  • Peypoux F, Guinand M, Michel G, Delcambe L, Das BC, Lederer E (1978a) Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996

    PubMed  CAS  Google Scholar 

  • Peypoux F, Besson F, Michel G, Delcambe L, Das BC (1978b) Structure de l’iturin C de Bacillus subtilis. Tetrahedron 34:1147–1152

    CAS  Google Scholar 

  • Peypoux F, Besson F, Michel G, Delcambe L (1981) Structure of bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118:323–327

    PubMed  CAS  Google Scholar 

  • Peypoux F, Marion D, Maget-Dana R, Ptak M, Das BC, Michel G (1985) Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur J Biochem 153:335–340

    PubMed  CAS  Google Scholar 

  • Peypoux F, Pommier MT, Marion D, Ptak M, Das BC, Michel G (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot 39(5):636–641

    PubMed  CAS  Google Scholar 

  • Pfaender P, Specht D, Heinrich G, Schwarz E, Kuhnle E, Simlot MM (1973) Enzymes of Bacillus licheniformis in the biosynthesis of bacitracin A. FEBS Lett 32(1):100–104

    PubMed  CAS  Google Scholar 

  • Pfleger BF, Nusca T, Scaglione JB, Sherman DH (2009) Petrobactin biosynthesis: a target for antibiotics against anthrax. Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States

  • Pichard B, Larue J-P, Thouvenot D (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133(3):215–218

    PubMed  CAS  Google Scholar 

  • Plowman JE, Loehr TM, Goldman SJ, Sanders-Loehr J (1984) Structure and siderophore activity of ferric schizokinen. J Inorg Biochem 20(3):183–197

    CAS  Google Scholar 

  • Posfay-Barbe KM, Schrenzel J, Frey J, Studer R, Korff C, Belli DC, Parvex P, Rimensberger PC, Schappi MG (2008) Food poisoning as a cause of acute liver failure. Pediatr Infect Dis J 27:846–847

    PubMed  Google Scholar 

  • Priest F (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. ASM Press, Washington, DC, pp 3–16

    Google Scholar 

  • Pueyo MT, Bloch C Jr, Carmona-Ribeiro AM, Mascio P (2009) Lipopeptides produced by a soil Bacillus megaterium strain. Microb Ecol 57(2):367–378

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    PubMed  CAS  Google Scholar 

  • Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, Keim P, Andersen GL (2003) Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol 69:2755–2764

    PubMed  CAS  Google Scholar 

  • Radzhapov RA, Zharikova GG, Silaev AB, Katrukha GS (1968) Amino acid composition and physical-chemical properties of esein and bresein, new antibiotics from Bacillus brevis. Nauchnye Doki Vyss Shkoly Biol Nauki 3:99–102

    CAS  Google Scholar 

  • Rahman MS, Ano T, Shoda M (2006) Second stage production of iturin A by induced germination of Bacillus subtilis RB14. J Biotechnol 125:513–515

    PubMed  CAS  Google Scholar 

  • Rapp C, Jung G, Katzer W, Loeffler W (1988a) Chlorotetaine from Bacillus subtilis, an antifungal dipeptide with an unusual chloro containing amino acid. Angew Chem 100(12):1801–1802

    CAS  Google Scholar 

  • Rapp C, Jung G, Kugler M, Loeffler W (1988b) Rhizocticins-new phosphono-oligopeptides with antifungal activity. Liebigs Ann Chem 7:655–661

    Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    PubMed  CAS  Google Scholar 

  • Raubitschek F, Dostrovsky A (1950) An antibiotic active against dermatophytes, derived from Bacillus subtilis. Dermatologica 100:45–49

    PubMed  CAS  Google Scholar 

  • Ravel J, Fraser CM (2005) Genomics at the genus scale. Trends Microbiol 13:95–97

    PubMed  CAS  Google Scholar 

  • Raza W, Wu H, Shah MAA, Shen Q (2008) A catechol type siderophore, bacillibactin: biosynthesis, regulation and transport in Bacillus subtilis. J Basic Microbiol 48:1–12

    Google Scholar 

  • Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Thonart P, Paquot M (1998) Foaming properties of lipopeptides produced by Bacillus subtilis: effect of lipid and peptide structural attributes. J Agric Food Chem 46:911–916

    CAS  Google Scholar 

  • Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033

    PubMed  CAS  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR et al (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86

    PubMed  CAS  Google Scholar 

  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, Lopez de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jorgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5(10):R77.1–R77.12

    Google Scholar 

  • Rogers HJ, Lomakina N, Abraham EP (1965) Structure of bacilysin. Biochem J 97(2):579–586

    PubMed  CAS  Google Scholar 

  • Romano A, Vitullo D, Di Pietro A, Lima G, Lanzotti V (2011) Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J Nat Prod 74:145–151

    PubMed  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    PubMed  CAS  Google Scholar 

  • Saeki K, Ozaki K, Kobayashi T, Ito S (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103:501–508

    PubMed  CAS  Google Scholar 

  • Schneider R, Hantke K (1993) Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol Microbiol 8(1):111–121

    PubMed  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schoenafinger G, Marahiel MA (2009) Nonribosomal peptides: biosynthesis. Wiley Encyclopedia Chem Biol 3:432–440

    CAS  Google Scholar 

  • Senghor A, Liang WL, Ho W (2007) A mutant of Bacillus subtilis strain LB5 with enhanced antifungal activities against Colletotrichum gloeosporioides. Biocontrol Sci Technol 9:575–580

    Google Scholar 

  • Seydlova G, Svobodova J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133

    CAS  Google Scholar 

  • Sheng G-Y-W, Makoto K, Kaoru Y, Kazunaga Y, Daisuke U (1995) Homocereulide, an extremely potent cytotoxic depsipeptide from the marine bacterium Bacillus cereus. Chem Lett 9:791–792

    Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515–521

    PubMed  CAS  Google Scholar 

  • Shoji J (1978) Recent chemical studies on peptide antibiotics from the genus Bacillus. Adv Appl Microbiol 18:187–214

    Google Scholar 

  • Shoji J, Hinoo H (1975) Antibiotics from the genus Bacillus. II. Chemical characterization of new antibiotics, cerexins A and B. J Antibiot 28:60–63

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T (1976a) Studies on antibiotics from the genus Bacillus. X. The structure of brevistin. J Antibiot 29(4):380–389

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T (1976b) Studies on antibiotics from the genus Bacillus. XVII. The structure of cerexin B. J Antibiot 29:1275–1280

    PubMed  CAS  Google Scholar 

  • Shoji J, Sakazaki R, Wakisaka Y, Koizumi K, Mayama M, Matsuura S, Matsumoto K (1976a) Studies on antibiotics from the genus Bacillus. IX. Isolation of brevistin, a new peptide antibiotic. J Antibiot 29:375–379

    PubMed  CAS  Google Scholar 

  • Shoji J, Hwoo H, Wakisaka Y, Koizumi K, Mayama M, Matsuura S, Matsumoto K (1976b) Isolation of a new antibiotic 333–25, related to antibiotic EM49 (Studies on antibiotics from the genus Bacillus. XI). J Antibiot 29:516–520

    PubMed  CAS  Google Scholar 

  • Shoji J, Hinoo H, Wakisaka Y, Koizumi K, Mayama M, Matsuura S, Matsumoto K (1976c) Studies on antibiotics from the genus Bacillus. VIII. Isolation of three new antibiotics, thiocillins I, II and III, related to micrococcin P. J Antibiot 29(4):366–374

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T, Sakazaki R (1976d) Studies on antibiotics from the genus Bacillus. XVI. The total structure of cerexin A. J Antibiot 29(12):1268–1274

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T, Matsumoto K, Takahashi Y, Mayama M (1976e) Studies on antibiotics from the genus Bacillus. XVIII. Production and isolation of cerexins C and D. J Antibiot 29(12):1281–1285

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T, Hinoo H (1977a) The structures of two new polymyxin group antibiotics. J Antibiot 30(5):427–429

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T, Hinoo H (1977b) The structure of polymyxin S. (Studies on antibiotics from the genus Bacillus. XXI). J Antibiot 30(12):1035–1041

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T, Terabe S, Konaka R (1979) Studies on antibiotics from the genus Bacillus. XXVI. Resolution of peptide antibiotics, cerexins and tridecaptins, by high performance liquid chromatography. J Antibiot 32(4):313–319

    PubMed  CAS  Google Scholar 

  • Shoji J, Kato T, Yoshimura Y, Tori K (1981) Structural studies on thiocillins I, II and III (Studies on antibiotics from the genus Bacillus. XXIX). J Antibiot 34(9):1126–1136

    PubMed  CAS  Google Scholar 

  • Siefert JL, Larios-Sanz M, Nakamura LK, Slepecky RA, Paul JH, Moore ER, Fox GE, Jurtshuk P Jr (2000) Phylogeny of marine Bacillus isolates from the Gulf of Mexico. Curr Microbiol 41:84–88

    PubMed  CAS  Google Scholar 

  • Slepecky R, Hemphill E (2006) The genus Bacillus. Nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 4. Springer, New York, pp 530–562

    Google Scholar 

  • Sogn JA (1976) Structure of the peptide antibiotic polypeptin. J Med Chem 19(10):1228–1231

    PubMed  CAS  Google Scholar 

  • Solaiman D (2005) Applications of microbial biosurfactants. Inform 16:408–410

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    PubMed  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857

    PubMed  CAS  Google Scholar 

  • Steinborn G, Hajirezaei M-R, Hofemeister J (2005) BAC genes for recombinant bacilysin and anticapsin production in Bacillus host strains. Arch Microbiol 183(2):71–79

    PubMed  CAS  Google Scholar 

  • Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML (2009) The genome of Bacillus subtilis Bacteriophage SPO1. J Mol Biol 388:48–70

    PubMed  CAS  Google Scholar 

  • Storm DR, Rosenthal KS, Swanson PE (1977) Polymyxin and related peptide antibiotics. Annu Rev Biochem 46:723–763

    PubMed  CAS  Google Scholar 

  • Sugawara K, Konishi M, Kawaguchi H (1984) BMY-28160, a new peptide antibiotic. J Antibiot 37(10):1257–1259

    PubMed  CAS  Google Scholar 

  • Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22(12):1259–1266

    CAS  Google Scholar 

  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    PubMed  CAS  Google Scholar 

  • Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303

    PubMed  CAS  Google Scholar 

  • Takimura Y, Saeki K, Kobayashi T (2004) Preparation of Bacillus alkali proteasa and use of the enzyme for production of ferrichrome. Jpn. Kokai Tokkyo Koho JP 2004065171

  • Tamaki M, Kokuno M, Sasaki I, Suzuki Y, Iwama M, Saegusa K, Kikuchi Y, Shindo M, Kimura M, Uchida Y (2009) Syntheses of low-hemolytic antimicrobial gratisin peptides. Bioorg Med Chem Lett 19(10):2856–2859

    PubMed  CAS  Google Scholar 

  • Temirov YV, Esikova TZ, Kashparov IA, Balashova TA, Vinokurov LM, Alakhov YB (2003) A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Russ J Bioorg Chem 29:542–549

    CAS  Google Scholar 

  • Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103(6):2331–2339

    PubMed  CAS  Google Scholar 

  • Thimon L, Peypoux F, Wallach J, Michel G (1995) Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 128(2):101–106

    PubMed  CAS  Google Scholar 

  • Thomas DW, Ito T (1969) Determination of amino acid sequences in oligopeptides by mass spectrometry. XVI. Revised structure of the peptide antibiotic esperin, established by mass spectrometry. Tetrahedron 25(9):1985–1990

    PubMed  CAS  Google Scholar 

  • Tjalsma H, Noback MA, Bron S, Venema G, Yamane K, van Dijl JM (1997) Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different sip genes. J Biol Chem 272:25983–25992

    PubMed  CAS  Google Scholar 

  • Toraya T, Maoka T, Tsuji H, Kobayashi M (1995) Purification and structural determination of an inhibitor of starfish oocyte maturation from a Bacillus sp. Appl Environ Microbiol 61:1799–1804

    PubMed  CAS  Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    PubMed  Google Scholar 

  • Trischman JA, Jensen PR, Fenical W (1994) Halobacillin: a cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Lett 35(31):5571–5574

    CAS  Google Scholar 

  • Tsuge K, Ano T, Shoda M (1996) Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch Microbiol 165:243–251

    PubMed  CAS  Google Scholar 

  • Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192

    PubMed  CAS  Google Scholar 

  • Tuin AW, Grotenbreg GM, Spalburg E, De Neeling AJ, Mars-Groenendijk RH, van der Marel GA, Noort D, Overkleeft HS, Overhand M (2009) Structural and biological evaluation of some loloatin C analogues. Bioorg Med Chem 17(17):6233–6240

    PubMed  CAS  Google Scholar 

  • Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    PubMed  CAS  Google Scholar 

  • Umezawa H, Aoyagi T, Nishikiori T, Okuyama A, Yamagishi Y, Hamada M, Takeuchi T (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot 39:737–744

    PubMed  CAS  Google Scholar 

  • Vaara MS, Vaara TI (2009) Polymyxin derivatives and uses thereof, including for the treatment of Gram-negative bacterial infections. US Patent US 2009215677

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39(7):888–901

    PubMed  CAS  Google Scholar 

  • Vater J (1986) Lipopeptides, an attractive class of microbial surfactants. Prog Colloid Polym Sci 72:12–18

    CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68(12):6210–6219

    PubMed  CAS  Google Scholar 

  • Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baeumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211

    PubMed  CAS  Google Scholar 

  • Velasquez JE, van der Donk WA (2011) Genome mining for ribosomally synthesized natural products. Curr Opin Chem Biol 15:11–21

    PubMed  CAS  Google Scholar 

  • Vogler K, Studer RO (1966) The chemistry of the polymyxin antibiotics. Experientia 22:345–416

    PubMed  CAS  Google Scholar 

  • Vogt TCB, Schinzel S, Bechinger B (2003) Biosynthesis of isotopically labeled gramicidins and tyrocidins by Bacillus brevis. J Biomol NMR 26(1):1–11

    PubMed  CAS  Google Scholar 

  • Voigt B, Schweder T, Sibbald MJJB, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer KH, Gottschalk G, van Dijl JM, Hecker M (2006) The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268–281

    PubMed  CAS  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M, Vater J (1997a) Antimycoplasma properties and applications in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    PubMed  CAS  Google Scholar 

  • Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997b) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297

    PubMed  CAS  Google Scholar 

  • Volpon L, Besson F, Lancelin J-M (1999) NMR structure of active and inactive forms of the sterol-dependent antifungal antibiotic bacillomycin L. Eur J Biochem 264:200–210

    PubMed  CAS  Google Scholar 

  • Volpon L, Besson F, Lancelin J-M (2000) NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS Lett 485:76–80

    PubMed  CAS  Google Scholar 

  • Wallace BA (1986) Structure of gramicidin A. Biophys J 49:295–306

    PubMed  CAS  Google Scholar 

  • Wallace BA (1998) Recent advances in the high resolution structures of bacterial channels: gramicidin A. J Struct Biol 121:123–141

    PubMed  CAS  Google Scholar 

  • Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10

    PubMed  CAS  Google Scholar 

  • Weissman KJ, Mueller R (2008) Crystal structure of a molecular assembly line. Angew Chem Int Edit 47:8344–8346

    CAS  Google Scholar 

  • Wilkinson S, Lowe LA (1966) Structures of the polymixins A and the question of identity with the polymixin M. Nature 212(5059):311

    PubMed  CAS  Google Scholar 

  • Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897

    PubMed  CAS  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    PubMed  CAS  Google Scholar 

  • Wipat A, Harwood CR (1999) The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28(1):1–9

    CAS  Google Scholar 

  • Wojciechowska H, Zgoda W, Borowski E, Dziegielewski K, Ulikowski S (1983) The antibiotic edeine. XII. Isolation and structure of edeine F. J Antibiot 36(7):793–798

    PubMed  CAS  Google Scholar 

  • Woo S-M, Woo JU, Kim S-D (2007) Purification and characterization of the siderophore from Bacillus licheniformis K11, a multifunctional plant growth-promoting rhizobacterium. Han’guk Misaengmul-Saengmyongkong Hakhoechi 35(2):128–134

    CAS  Google Scholar 

  • Woynarowska B, Chmara H, Borowski E (1979) Differential mechanism of action of the antibiotic edeine on prokaryotic and eukaryotic organism points to new basis for selective toxicity. Drugs Exp Clin Res 5:181–186

    CAS  Google Scholar 

  • Xu Y, Sugar IP, Krishna NR (1995) A variable target intensity restrained global optimization (VARTIGO) procedure for determining three-dimensional structures of polypeptides from NOESY data: application to gramicidin-S. J Biomol NMR 5:37–48

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Amro MM, Bock M, Boseker K, Fredrickson HL, Kessel DG, Timmis KN (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Eng 18:147–160

    CAS  Google Scholar 

  • Yakimov MM, Abraham W-R, Meyer H, Giuliano L, Golyshin PN (1999) Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim Biophys Acta 1438:273–280

    PubMed  CAS  Google Scholar 

  • Yang S, Wei D, Mu B (2006) Determination of the amino acid sequence in a cyclic lipopeptide using MS with DHT mechanism. J Biochem Biophys Methods 68:69–74

    PubMed  CAS  Google Scholar 

  • Yang Z, Guo H, Zhang X (2008) Study on the control of peach postharvest diseases using Bacillus subtilis. China Fruits 23:35–38

    Google Scholar 

  • Yoko T, Asao M, Yoshiyuki T, Masatsune K (1979) The structure of permetin A, a new polypeptin type antibiotic produced by Bacillus circulans. J Antibiot 32(2):121–129

    Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In-situ biosurfactant production by injected Bacillus strains in a limestone petroleum reservoir. Appl Environ Microbiol 73(4):1239–1247

    PubMed  CAS  Google Scholar 

  • Zeigler DR, Perkins JB (2009) The genus Bacillus. In: Goldman E, Green LH (eds) Practical handbook of microbiology, 2nd edn. The Ohio State University, Columbus, OH, pp 309–337

    Google Scholar 

  • Zharikova GG, Zarubina AP, Kherat DM, Myaskovskaya SP, Maksimov VN (1975) Formation of polypeptide antibiotics by spontaneous and induced mutants of Bacillus brevis var G.-B. Antibiot Ikh Produtsenty 163–186

  • Zhenzhen Z, Qiushuo W, Kaimei W, Kemp B, Changhong L, Yucheng G (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour Technol 101:292–297

    Google Scholar 

  • Zhou Y, Choi YL, Sun M, Yu ZN (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I.G.C. gratefully acknowledges to Prof. Dr. A. Galvez for the carefully reading of the manuscript and MEC for Grant AGL2012-39798-CO2-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Aleu or I. G. Collado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdache, A., Azarken, R., Lamarti, A. et al. Comparative genome analysis of Bacillus spp. and its relationship with bioactive nonribosomal peptide production. Phytochem Rev 12, 685–716 (2013). https://doi.org/10.1007/s11101-013-9278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9278-4

Keywords

Navigation