Skip to main content
Log in

Photosynthetic and yield responses of rice (Oryza sativa L.) to different water management strategies in subtropical China

  • Original paper
  • Published:
Photosynthetica

Abstract

An experiment was performed to study gas exchange and chlorophyll fluorescence responses of rice (Oryza sativa L.) to various regimes, such as flooding–midseason drying–flooding (FDF), flooding–midseason drying–saturation (FDS), and flooding–rain-fed (FR) regimes. Compared to FDF, FR resulted in an obvious decrease in net photosynthetic rate (PN), due to the decrease in stomatal conductance and the increase in stomatal limitation. In contrast, FDS plants did not suffer stomatal limitation and had comparable PN with FDF plants. For diurnal light-saturated electron transport rate and saturation irradiance, FDF performed the best, which was followed by FDS and FR successively. FR and FDS plants tended to suffer from midday depression. FDS reduced irrigated water by 17.2% compared to FDF for comparable yields. The results suggested that FDS can be an effective irrigation regime to save water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a :

ambient CO2 concentration

Chl:

chlorophyll

C i :

intercellular CO2 concentration

E :

transpiration rate

Em :

saturation irradiance

ETR:

electron transport rate

ETRmax :

light–saturated ETR

FDF:

flooding–midseason drying–flooding water regime

FDS:

flooding–midseason drying–saturating water regime

FR:

flooding–rain-fed water regime

Fm' :

maximal fluorescence yield of the light-adapted state

Ft:

instantaneous fluorescence

gs:

stomatal conductance

Ls :

stomatal limitation value

P N :

net photosynthetic rate

RLC:

rapid light curve

WP:

water productivity

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Akram H.M., Ali A., Sattar A. et al.: Impact of water deficit stress on various physiological and agronomic traits of three basmati rice (Oryza sativa L.) cultivars.–J. Anim. Plant Sci. 23: 1415–1423, 2013.

    Google Scholar 

  • Alberto M.C.R, Wassmann R., Hirano T. et al.: CO2/heat fluxes in rice fields: Comparative assessment of flooded and nonflooded fields in the Philippines.–Agr. Forest Meteorol. 149: 1737–1750, 2009.

    Article  Google Scholar 

  • Alberto M.C.R., Wassmann R., Hirano T. et al.: Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines.–Agr. Water Manage. 98: 1417–1430, 2011.

    Article  Google Scholar 

  • Ambavaram M.M.R., Basu S., Krishnan A. et al.: Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress.–Nat. Commun. 5: 5302, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barker R., Tuong T.P., Li Y. et al.: Growing more rice with less water: Research findings from a study in China.–Paddy Water Environ. 2: 185–185, 2004.

    Article  Google Scholar 

  • Belder P., Bouman B.A.M., Cabangon R. et al.: Effect of watersaving irrigation on rice yield and water use in typical lowland conditions in Asia.–Agr. Water Manage. 65: 193–210, 2004.

    Article  Google Scholar 

  • Bouman B.A.M., Lampayan R.M., Tuong T.P.: Water Management in Irrigated Rice: Coping with Water Scarcity. Pp. 54. Int. Rice Res. Inst., Los Baños 2007.

    Google Scholar 

  • Bouman B.A.M., Toung T.P.: Field water management to save water and increase its productivity in irrigated lowland rice.–Agr. Water Manage. 49: 11–30, 2001.

    Article  Google Scholar 

  • Chu G., Chen T., Wang Z. et al.: Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice.–Field Crop. Res. 162: 108–119, 2014.

    Article  Google Scholar 

  • Elliott J., Deryng D., Müller C. et al.: Constraints and potentials of future irrigation water availability on agricultural production under climate change.–P. Natl. Acad. Sci. USA 111: 3239–3244, 2013.

    Article  CAS  Google Scholar 

  • Escasinas R.O., Zamora O.B.: Agronomic response of lowland rice PSB Rc 18 (Oryza sativa L.) to different water, spacing and nutrient management.–Philipp. J. Crop Sci. 36: 37–46, 2011.

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations): The Database of FAOSTAT. 2014. Available online: https://doi.org/www.fao.org/faostat/en/#data/QC/visualize, accessed on May 19, 2017.

  • Fong J.D.M., Masunaga T., Sato K.: Assessment of the influence of water management on yield component and morphological behavior of rice at post-heading stage.–Paddy Water Environ. 14: 211–220, 2016.

    Article  Google Scholar 

  • Foyer C.H., Noctor G.: Leaves in the dark see the light.–Science 284: 599–601, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Gururani M.A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.–Mol. Plant 8: 1304–1320, 2015.

    Article  PubMed  CAS  Google Scholar 

  • He C.L.: Effects of furrow irrigation on the growth, production, and water use efficiency of direct sowing rice.–Sci. World J. 10: 1483–1497, 2010.

    Article  Google Scholar 

  • He H., Yang R., Jia B. et al.: Rice photosynthetic productivity and PSII photochemistry under nonflooded irrigation.–Sci. Word J. 2014: 839658, 2014.

    Google Scholar 

  • Khush G.S.: What it will take to feed 5.0 billion rice consumers in 2030.–Plant Mol. Biol. 59: 1–6, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Kumagai E., Araki T., Ueno O.: Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa L.) cultivars.–Photosynthetica 47: 241–246, 2009.

    Article  CAS  Google Scholar 

  • Kumar A., Nayak A.K., Pani D.R. et al.: Physiological and morphological responses of four different rice cultivars to soil water potential based deficit irrigation management strategies.–Field Crop. Res. 205: 78–94, 2017.

    Article  Google Scholar 

  • Lampayan R.M., Rejesus R.M., Singleton G.R. et al.: Adoption and economics of alternate wetting and drying water management for irrigated lowland rice.–Field Crop. Res. 170: 95–108, 2015.

    Article  Google Scholar 

  • Lal R., Delgado J.A., Gulliford J. et al.: Adapting agriculture to drought and extreme events.–J. Soil Water Conserv. 67: 162A–167A, 2012.

    Article  Google Scholar 

  • Matsuo N., Ozawa K., Mochizuki T.: Physiological and morphological traits related to water use by three rice (Oryza sativa L.) genotypes grown under aerobic rice systems.–Plant Soil 335: 349–361, 2010.

    Article  CAS  Google Scholar 

  • Nguyen H.T., Fischer K.S., Fukai S.: Physiological responses to various water saving systems in rice.–Field Crop. Res. 112: 189–198, 2009.

    Article  Google Scholar 

  • Ohsumi A., Hamasaki A., Nakagawa H. et al.: Response of leaf photosynthesis to vapor pressure difference in rice (Oryza sativa L.) varieties in relation to stomatal and leaf internal conductance.–Plant Prod. Sci. 11: 184–191, 2008.

    Article  Google Scholar 

  • Pan S.G., Cao C.G., Cai M.L. et al.: Effects of irrigation regime and nitrogen management on grain yield, quality and water productivity in rice.–J. Food Agric. Environ. 7: 559–564, 2009.

    CAS  Google Scholar 

  • Perdomo J.A., Conesa M.A, Medrano H. et al.: Effects of longterm individual and combined water and temperature stress on the growth of rice, wheat and maize: relationship with morphological and physiological acclimation.–Physiol. Plantarum 155: 149–165, 2015.

    Article  CAS  Google Scholar 

  • Perdomo J.A., Capo-Bauca S., Carmo-Silva E. et al.: Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit.–Front. Plant Sci. 8: 490, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieters A.J., El Souki S.: Effects of drought during grain filling on PSII activity in rice.–J. Plant Physiol. 162: 903–911, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Pieters A.J., Nùñez M.: Photosynthesis, water use efficiency, and d13C in two rice genotypes with contrasting response to water deficit.–Photosynthetica 46: 574–580, 2008.

    Article  CAS  Google Scholar 

  • Platt T., Gallegos C.L., Harrison W.G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton.–J. Mar. Res. 38: 687–701, 1980.

    Google Scholar 

  • Ralph P.J., Gademann R.: Rapid light curves: a powerful tool to assess photosynthetic activity.–Aquat. Bot. 82: 222–237, 2005.

    Article  CAS  Google Scholar 

  • Stuerz S., Sow A., Muller B. et al.: Canopy microclimate and gas-exchange in response to irrigation system in lowland rice in the Sahel.–Field Crop. Res. 163: 64–73, 2014.

    Article  Google Scholar 

  • Tabbal D.F., Bouman B.A.M., Bhuiyan S.I. et al.: On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines.–Agr. Water Manage. 56: 93–112, 2002.

    Article  Google Scholar 

  • Thakur A.K., Mohanty R.K., Patil D.U. et al.: Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice.–Paddy Water Environ. 12: 413–424, 2014.

    Article  Google Scholar 

  • Wei X., Holman I., Lin E. et al.: Climate change, water availability and future cereal production in China.–Agr. Ecosyst. Environ. 135: 58–69, 2010.

    Article  Google Scholar 

  • Yan C., Chen H., Fan T. et al.: Rice flag leaf physiology, organ and canopy temperature in response to water stress.–Plant Prod. Sci. 15: 92–99, 2012.

    Article  CAS  Google Scholar 

  • Yan T., Wang J., Huang J.: Urbanization, agricultural water use, and regional and national crop production in China.–Ecol. Model. 318: 226–235, 2015.

    Article  Google Scholar 

  • Yoshida S.: Physiological analysis of rice yield.–In: Yoshida S. (ed.): Fundamentals of Rice Crop Science. Pp. 231–251. Int. Rice Res. Inst., Los Baños 1981.

    Google Scholar 

  • Zain N.A.M., Ismail M.R., Puteh A. et al.: Impact of cyclic water stress on growth, physiological responses and yield of rice (Oryza sativa L.) grown in tropical environment.–Cienc. Rural. 44: 2136–2141, 2014.

    Article  Google Scholar 

  • Zhou Q., Ju C.X., Wang Z.Q. et al.: Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation.–J. Integr. Agr. 16: 1028–1043, 2017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wang.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (grant numbers: 41401292 and 41503081) and the International Science & Technology Cooperation Program of China (grant number: 2015DFA90450).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X.H., Wang, W., Xie, X.L. et al. Photosynthetic and yield responses of rice (Oryza sativa L.) to different water management strategies in subtropical China. Photosynthetica 56, 1031–1038 (2018). https://doi.org/10.1007/s11099-018-0817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0817-5

Additional key words

Navigation