Skip to main content
Log in

An umbrella review of the diagnostic value of next-generation sequencing in infectious diseases

  • Review Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background

An increasing number of systematic reviews (SRs) have evaluated the diagnostic values of next-generation sequencing (NGS) in infectious diseases (IDs).

Aim

This umbrella analysis aimed to assess the potential risk of bias in existing SRs and to summarize the published diagnostic values of NGS in different IDs.

Method

We searched PubMed, Embase, and the Cochrane Library until September 2023 for SRs assessing the diagnostic validity of NGS for IDs. Two investigators independently determined review eligibility, extracted data, and evaluated reporting quality, risk of bias, methodological quality, and evidence certainty in the included SRs.

Results

Eleven SRs were analyzed. Most SRs exhibited a moderate level of reporting quality, while a serious risk of bias was observed in all SRs. The diagnostic performance of NGS in detecting pneumocystis pneumonia and periprosthetic/prosthetic joint infection was notably robust, showing excellent sensitivity (pneumocystis pneumonia: 0.96, 95% CI 0.90–0.99, very low certainty; periprosthetic/prosthetic joint infection: 0.93, 95% CI 0.83–0.97, very low certainty) and specificity (pneumocystis pneumonia: 0.96, 95% CI 0.92–0.98, very low certainty; periprosthetic/prosthetic joint infection: 0.95, 95% CI 0.92–0.97, very low certainty). NGS exhibited high specificity for central nervous system infection, bacterial meningoencephalitis, and tuberculous meningitis. The sensitivity to these infectious diseases was moderate. NGS demonstrated moderate sensitivity and specificity for multiple infections and pulmonary infections.

Conclusion

This umbrella analysis indicates that NGS is a promising technique for diagnosing pneumocystis pneumonia and periprosthetic/prosthetic joint infection with excellent sensitivity and specificity. More high-quality original research and SRs are needed to verify the current findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–128. https://doi.org/10.1016/S0140-6736(12)61728-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang X, Hong XZ, Li YW, et al. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res. 2022;9(1):1–7. https://doi.org/10.1186/s40779-022-00374-3.

    Article  Google Scholar 

  3. Ackerman CM, Myhrvold C, Thakku SG, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020;582:277–82. https://doi.org/10.1038/s41586-020-2279-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang XX, Liu JS, Han LF, et al. Towards a global one health index: a potential assessment tool for one health performance. Infect Dis Poverty. 2022;11(1):57. https://doi.org/10.1186/s40249-022-00979-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu Q, Jing W, Liu M, et al. Health disparity and mortality trends of infectious diseases in BRICS from 1990 to 2019. J Glob Health. 2022;12:04028. https://doi.org/10.7189/jogh.12.04028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Acharya S, Barber SL, Lopez-Acuna D, et al. BRICS and global health. Bull World Health Organ. 2014;92:386-386A. https://doi.org/10.2471/BLT.14.140889.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Summer A. IDS working paper: where do the world’s poor live? A new update. 2012. Available: https://www.ids.ac.uk/download.php?file=files/dm-file/Wp393.pdf. Accessed: 20 Sept 2021.

  8. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.

    Article  Google Scholar 

  9. Huang G, Guo F. Loss of life expectancy due to respiratory infectious diseases: findings from the global burden of disease study in 195 countries and territories 1990–2017. J Popul Res (Canberra). 2022;39(1):1–43. https://doi.org/10.1007/s12546-021-09271-3.

    Article  PubMed  Google Scholar 

  10. Springer BD, Cahue S, Etkin CD, et al. Infection burden in total hip and knee arthroplasties: an international registry-based perspective. Arthroplast Today. 2017;3(2):137–40. https://doi.org/10.1016/j.artd.2017.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rietbergen L, Kuiper JW, Walgrave S, et al. Quality of life after staged revision for infected total hip arthroplasty: a systematic review. Hip Int. 2016;26(4):311–8. https://doi.org/10.5301/hipint.5000416.

    Article  PubMed  Google Scholar 

  12. Bozic KJ, Kurtz SM, Lau E, et al. The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res. 2010;468(1):45–51. https://doi.org/10.1007/s11999-009-0945-0.

    Article  PubMed  Google Scholar 

  13. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–96. https://doi.org/10.1097/01.CCM.0000217961.75225.E9.

    Article  PubMed  Google Scholar 

  14. Glimåker M, Johansson B, Grindborg Ö, et al. Adult bacterial meningitis: earlier treatment and improved outcome following guideline revision promoting prompt lumbar puncture. Clin Infect Dis. 2015;60:1162–9. https://doi.org/10.1093/cid/civ011.

    Article  CAS  PubMed  Google Scholar 

  15. Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42:2409–17. https://doi.org/10.1097/CCM.0000000000000509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Erickson TA, Muscal E, Munoz FM, et al. Infectious and autoimmune causes of encephalitis in children. Pediatrics. 2020;145(6): e20192543. https://doi.org/10.1542/peds.2019-2543.

    Article  PubMed  Google Scholar 

  17. Messacar K, Parker SK, Todd JK, et al. Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship. J Clin Microbiol. 2017;55:715–23. https://doi.org/10.1128/JCM.02264-16.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Haidar G, Singh N. Fever of unknown origin. N Engl J Med. 2022;386(5):463–77. https://doi.org/10.1056/NEJMra2111003.

    Article  CAS  PubMed  Google Scholar 

  19. Heesterbeek H, Anderson RM, Andreasen V, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015;347(6227):aaa4339. https://doi.org/10.1126/science.aaa4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Denny KJ, De Waele J, Laupland KB, et al. When not to start antibiotics: avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect. 2020;26(1):35–40. https://doi.org/10.1016/j.cmi.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  21. Miao Q, Ma Y, Wang Q, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. Clin Infect Dis. 2018;67:S231–40. https://doi.org/10.1093/cid/ciy693.

    Article  CAS  PubMed  Google Scholar 

  22. Peng JM, Du B, Qin HY, et al. Metagenomic next-generation sequencing for the diagnosis of suspected pneumonia in immunocompromised patients. J Infect. 2021;82:22–7. https://doi.org/10.1016/j.jinf.2021.01.029.

    Article  CAS  PubMed  Google Scholar 

  23. Yoon HK, Cho SH, Lee DY, et al. A review of the literature on culture-negative periprosthetic joint infection: epidemiology, diagnosis and treatment. Knee Surg Relat Res. 2017;29(3):155–64. https://doi.org/10.5792/ksrr.16.034.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ji XC, Zhou LF, Li CY, et al. Reduction of human DNA contamination in clinical cerebrospinal fluid specimens improvesthe sensitivity of metagenomic next-generation sequencing. J Mol Neurosci. 2020;70(5):659–66. https://doi.org/10.1007/s12031-019-01472-z.

    Article  CAS  PubMed  Google Scholar 

  25. Fei X, Li C, Zhang Y, et al. Next-generation sequencing of cerebrospinal fluid for the diagnosis of neurocysticercosis. Clin Neurol Neurosurg. 2020;193: 105752. https://doi.org/10.1016/j.clineuro.2020.105752.

    Article  PubMed  Google Scholar 

  26. Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol. 2019;14:319–38. https://doi.org/10.1146/annurev-pathmechdis-012418-012751.

    Article  CAS  PubMed  Google Scholar 

  27. Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370(25):2408–17. https://doi.org/10.1056/NEJMoa1401268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu X, Jiang W, Shi Y, et al. Applications of sequencing technology in clinical microbial infection. J Cell Mol Med. 2019;23(11):7143–50. https://doi.org/10.1111/jcmm.14624.

    Article  PubMed  PubMed Central  Google Scholar 

  29. To RK, Ramchandar N, Gupta A, et al. Use of plasma metagenomic next-generation sequencing for pathogen identification in pediatric endocarditis. Pediatr Infect Dis J. 2021;40(5):486–8. https://doi.org/10.1097/INF.0000000000003038.

    Article  PubMed  Google Scholar 

  30. Lieberman JA, Naureckas Li C, Lamb GS, et al. Case report: comparison of plasma metagenomics to bacterial PCR in a case of prosthetic valve endocarditis. Front Pediatr. 2020;8:575674. https://doi.org/10.3389/fped.2020.575674.

    Article  PubMed  Google Scholar 

  31. Farnaes L, Wilke J, Ryan Loker K, et al. Community-acquired pneumonia in children: cell-free plasma sequencing for diagnosis and management. Diagn Microbiol Infect Dis. 2019;94:188–91. https://doi.org/10.1016/j.diagmicrobio.2018.12.016.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Han Y, Feng J. Metagenomic next-generation sequencing for mixed pulmonary infection diagnosis. BMC Pulm Med. 2019;19(1):252. https://doi.org/10.1186/s12890-019-1022-4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wilson MR, Sample HA, Zorn KC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 2019;380(24):2327–40. https://doi.org/10.1056/NEJMoa1803396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai Y, Fang X, Chen Y, et al. Metagenomic next generation sequencing improves diagnosis of prosthetic joint infection by detecting the presence of bacteria in periprosthetic tissues. Int J Infect Dis. 2020;96:573–8. https://doi.org/10.1016/j.ijid.2020.05.125.

    Article  CAS  PubMed  Google Scholar 

  35. Fang X, Cai Y, Shi T, et al. Detecting the presence of bacteria in low-volume preoperative aspirated synovial fluid by metagenomic next-generation sequencing. Int J Infect Dis. 2020;99:108–16. https://doi.org/10.1016/j.ijid.2020.07.039.

    Article  CAS  PubMed  Google Scholar 

  36. Kildow BJ, Ryan SP, Danilkowicz R, et al. Next-generation sequencing not superior to culture in periprosthetic joint infection diagnosis. Bone Joint J. 2021;103:26–31. https://doi.org/10.1302/0301-620X.103B1.BJJ-2020-0017.R3.

    Article  PubMed  Google Scholar 

  37. Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing. J Bone Joint Surg Am. 2018;100:147–54. https://doi.org/10.2106/JBJS.17.00434.

    Article  PubMed  Google Scholar 

  38. Tarabichi M, Alvand A, Shohat N, et al. Diagnosis of Streptococcus canis periprosthetic joint infection: the utility of next-generation sequencing. Arthroplast Today. 2018;4:20–3. https://doi.org/10.1016/j.artd.2017.08.005.

    Article  PubMed  Google Scholar 

  39. Tarabichi M, Shohat N, Goswami K, et al. Can next generation sequencing play a role in detecting pathogens in synovial fluid? Bone Joint J. 2018;100:127–33. https://doi.org/10.1302/0301-620X.100B2.BJJ-2017-0531.R2.

    Article  PubMed  Google Scholar 

  40. Torchia MT, Amakiri I, Werth P, et al. Characterization of native knee microorganisms using next-generation sequencing in patients undergoing primary total knee arthroplasty. Knee. 2020;27:1113–9. https://doi.org/10.1016/j.knee.2019.12.013.

    Article  PubMed  Google Scholar 

  41. Goggin KP, Gonzalez-Pena V, Inaba Y, et al. Evaluation of plasma microbial cell-free DNA sequencing to predict bloodstream infection in pediatric patients with relapsed or refractory cancer. JAMA Oncol. 2020;6(4):552–6. https://doi.org/10.1001/jamaoncol.2019.4120.

    Article  PubMed  Google Scholar 

  42. Eichenberger EM, de Vries CR, Ruffin F, et al. Microbial cell-free DNA identifies etiology of bloodstream infections, persists longer than conventional blood cultures, and its duration of detection is associated with metastatic infection in patients with staphylococcus aureus and gram-negative bacteremia. Clinic Infect Dis. 2022;74(11):2020–7. https://doi.org/10.1093/cid/ciab742.

    Article  CAS  Google Scholar 

  43. Gosiewski T, Ludwig-Galezowska AH, Huminska K, et al. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method-the observation of DNAemia. Eur J Clin Microbiol Infect Dis. 2017;36(2):329–36. https://doi.org/10.1007/s10096-016-2805-7.

    Article  CAS  PubMed  Google Scholar 

  44. Grumaz S, Grumaz C, Vainshtein Y, et al. Enhanced performance of next-generation sequencing diagnostics compared with standard of care microbiological diagnostics in patients suffering from septic shock. Crit Care Med. 2019;47:e394-402. https://doi.org/10.1097/CCM.0000000000003658.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang HC, Ai JW, Cui P, et al. Incremental value of metagenomic next generation sequencing for the diagnosis of suspected focal infection in adults. J Infect. 2019;79:419–25.

    Article  PubMed  Google Scholar 

  46. Hong DK, Blauwkamp TA, Kertesz M, et al. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn Microbiol Infect Dis. 2018;92(3):210–3. https://doi.org/10.1016/j.diagmicrobio.2018.06.009.

    Article  CAS  PubMed  Google Scholar 

  47. Armstrong AE, Rossoff J, Hollemon D, et al. Cell-free DNA next-generation sequencing successfully detects infectious pathogens in pediatric oncology and hematopoietic stem cell transplant patients at risk for invasive fungal disease. Pediatr Blood Cancer. 2019;66: e27734. https://doi.org/10.1002/pbc.27734.

    Article  CAS  PubMed  Google Scholar 

  48. Yan L, Sun W, Lu Z, et al. Metagenomic next-generation Sequencing (mNGS) in cerebrospinal fluid for rapid diagnosis of tuberculosis meningitis in HIV-negative population. Int J Infect Dis. 2020;96:270–5. https://doi.org/10.1016/j.ijid.2020.04.048.

    Article  CAS  PubMed  Google Scholar 

  49. Fung M, Zompi S, Seng H, et al. Plasma cell-free DNA next-generation sequencing to diagnose and monitor infections in allogeneic hematopoietic stem cell transplant patients. Open Forum Infect Dis. 2018;5:ofy301. https://doi.org/10.1093/ofid/ofy301.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhou Y, Hemmige V, Dalai SC, et al. Utility of whole-genome next-generation sequencing of plasma in identifying opportunistic infections in HIV/AIDS. Open AIDS J. 2019;13:7–11.

    Article  Google Scholar 

  51. Chen S, Kang Y, Li D, et al. Diagnostic performance of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in patients with pulmonary infections: systematic review and meta-analysis. Int J Infect Dis. 2022;122:867–73. https://doi.org/10.1016/j.ijid.2022.07.054.

    Article  CAS  PubMed  Google Scholar 

  52. Tekin A, Truong HH, Rovati L, et al. The diagnostic accuracy of metagenomic next-generation sequencing in diagnosing pneumocystis pneumonia: a systemic review and meta-analysis. Open Forum Infect Dis. 2023;10(9):442. https://doi.org/10.1093/ofid/ofad442.

    Article  Google Scholar 

  53. Qu C, Chen Y, Ouyang Y, et al. Metagenomics next-generation sequencing for the diagnosis of central nervous system infection: a systematic review and meta-analysis. Front Neurol. 2022;13: 989280. https://doi.org/10.3389/fneur.2022.989280.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kanaujia R, Biswal M, Angrup A, et al. Diagnostic accuracy of the metagenomic next-generation sequencing (mNGS) for detection of bacterial meningoencephalitis: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2022;41(6):881–91. https://doi.org/10.1007/s10096-022-04445-0.

    Article  PubMed  Google Scholar 

  55. Yu G, Zhao W, Shen Y, et al. Metagenomic next generation sequencing for the diagnosis of tuberculosis meningitis: a systematic review and meta-analysis. PLoS ONE. 2020;15(12): e0243161. https://doi.org/10.1371/journal.pone.0243161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li M, Zeng Y, Wu Y, et al. Performance of sequencing assays in diagnosis of prosthetic joint infection: a systematic review and meta-analysis. J Arthroplasty. 2019;34(7):1514-1522.e4. https://doi.org/10.1016/j.arth.2019.02.044.

    Article  PubMed  Google Scholar 

  57. Tan J, Liu Y, Ehnert S, et al. The effectiveness of metagenomic next-generation sequencing in the diagnosis of prosthetic joint infection: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2022;12: 875822. https://doi.org/10.3389/fcimb.2022.875822.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tang Y, Zhao D, Wang S, et al. Diagnostic value of next-generation sequencing in periprosthetic joint infection: a systematic review. Orthop Surg. 2022;14(2):190–8. https://doi.org/10.1111/os.13191.

    Article  PubMed  Google Scholar 

  59. Cheok T, Smith T, Siddiquee S, et al. Synovial fluid calprotectin performs better than synovial fluid polymerase chain reaction and interleukin-6 in the diagnosis of periprosthetic joint infection : a systematic review and meta-analysis. Bone Joint J. 2022;104(3):311–20. https://doi.org/10.1302/0301-620X.104B3.BJJ-2021-1320.R1.

    Article  PubMed  Google Scholar 

  60. Hantouly AT, Alzobi O, Toubasi AA, et al. Higher sensitivity and accuracy of synovial next-generation sequencing in comparison to culture in diagnosing periprosthetic joint infection: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2023;31(9):3672–83. https://doi.org/10.1007/s00167-022-07196-9.

    Article  PubMed  Google Scholar 

  61. Aromataris E, Fernandez R, Godfrey CM, et al. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc. 2015;13(3):132–40. https://doi.org/10.1097/XEB.0000000000000055.

    Article  PubMed  Google Scholar 

  62. Gates M, Gates A, Pieper D, et al. Reporting guideline for overviews of reviews of healthcare interventions: development of the PRIOR statement. BMJ. 2022;9(378): e070849. https://doi.org/10.1136/bmj-2022-070849.

    Article  Google Scholar 

  63. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;21(339): b2700. https://doi.org/10.1136/bmj.b2700.

    Article  Google Scholar 

  64. Whiting P, Savović J, Higgins JP, et al. A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016;69:225–34. https://doi.org/10.1016/j.jclinepi.2015.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huan T, Yang L, An P, et al. Interpretation of quality evaluation tool AMSTAR 2 for systematic evaluation of randomized and nonrandomized preventive studies. Chin J Evid-Based Med. 2018;18(01):101–8. https://doi.org/10.7507/1672-2531.201711005.

    Article  Google Scholar 

  66. Zhang F, Shen A, Zeng X, et al. Interpretation of systematic evaluation methodology quality evaluation tool AMSTAR 2. Chin J Evid-Based Cardiovasc Med. 2018;10(01):14–8. https://doi.org/10.3969/j.issn.1674-4055.2018.01.03.

    Article  Google Scholar 

  67. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358: j4008. https://doi.org/10.1136/bmj.j4008.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hultcrantz M, Mustafa RA, Leeflang MMG, et al. Defining ranges for certainty ratings of diagnostic accuracy: a GRADE concept paper. J Clin Epidemiol. 2020;117:138–48. https://doi.org/10.1016/j.jclinepi.2019.05.002.

    Article  PubMed  Google Scholar 

  69. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026.

    Article  PubMed  Google Scholar 

  70. Honghao L, Qiuyu Y, Mingyao S, et al. Advance in the GRADE approach to grade evidence from a systematic review of single diagnostic test accuracy. Chin J Evid Based Med. 2022;22(9):1090–8. https://doi.org/10.1007/s00259-022-05769-x.

    Article  Google Scholar 

  71. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490. https://doi.org/10.1136/bmj.328.7454.1490.

    Article  PubMed  Google Scholar 

  72. Liu J, Zhang Q, Dong YQ, et al. Diagnostic accuracy of metagenomic next-generation sequencing in diagnosing infectious diseases: a meta-analysis. Sci Rep. 2022;12(1):21032. https://doi.org/10.1038/s41598-022-25314-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009.

    Article  PubMed  Google Scholar 

  74. Lv M, Zhu C, Zhu C, et al. Clinical values of metagenomic next-generation sequencing in patients with severe pneumonia: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2023;13:1106859. https://doi.org/10.3389/fcimb.2023.1106859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. The Editor Board of Chinese Journal of Infectious Diseases. Expert consensus on the clinical application of metagenomics next-generation sequencing on pathogen detection of infectious diseases. Chin J Infect Dis. 2020;38(11):681–9.

    Google Scholar 

  76. Clinical Microbiology Group of Chinese Society of Laboratory Medicine, Clinical Microbiology Group of Chinese Society of Microbiology and Immunology, and Society of Clinical Microbiology and Infection of China International Exchange and Promotion Association for Medical and Healthcare. Expert consensus on metagenomics next-generation sequencing application on pathogen detection of infectious diseases. Chin J Lab Med. 2021; 44(2):107–20.

  77. The Society of Pediatrics of Chinese Medical Association, the Editor Board of Chinese Journal of Pediatrics. The Expert consensus on clinical of invasive pulmonary fungal infections in children. Chin J Pediatr. 2022;60(4):274–82. https://doi.org/10.3760/cma.j.cn112140-20220210-00112.

    Article  Google Scholar 

  78. Infectious Disease Group of Respiratory Disease Branch of Chinese Medical Association. Guidelines for the diagnostic and treatment of adults with hospital-acquired pneumonia and ventilator-associated pneumonia in China. Chin J Tuberc Respir Dis. 2018;41(4):255–78.

    Google Scholar 

  79. The Subspecialty Group of Neurology of the Society of Pediatrics of Chinese Medical Association. Expert consensus on diagnosis and treatment of community acquired bacterial meningitis in children. Chin J Pediatr. 2019;57(8):584–291. https://doi.org/10.3760/cma.j.issn.0578-1310.2019.08.003.

    Article  Google Scholar 

  80. Brown JR, Bharucha T, Breuer J. Encephalitis diagnosis using metagenomics: application of next generation sequencing for undiagnosed cases. J Infect. 2018;76(3):225–40. https://doi.org/10.1016/j.jinf.2017.12.014.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kato H, Hagihara M, Asai N, et al. Comparison of microbial detection rates in microbial culture methods versus next-generation sequencing in patients with prosthetic joint infection: a systematic review and meta-analysis. J Orthop Surg Res. 2023;18(1):604. https://doi.org/10.1186/s13018-023-03973-5.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee RA, Al Dhaheri F, Pollock NR, et al. Assessment of the clinical utility of plasma metagenomic next-generation sequencing in a pediatric hospital population. J Clin Microbiol. 2020;58(7):e00419-420. https://doi.org/10.1128/JCM.00419-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rossoff J, Chaudhury S, Soneji M, et al. Noninvasive diagnosis of infection using plasma next-generation sequencing: a single-center experience. Open Forum Infect Dis. 2019;6:327. https://doi.org/10.1093/ofid/ofz327.

    Article  Google Scholar 

  84. Hogan CA, Yang S, Garner OB, et al. Clinical impact of metagenomic next-generation sequencing of plasma cell-free DNA for the diagnosis of infectious diseases: a multicenter retrospective cohort study. Clin Infect Dis. 2021;72(2):239–45. https://doi.org/10.1093/cid/ciaa035.

    Article  CAS  PubMed  Google Scholar 

  85. Xu C, Chen X, Zhu G, et al. Utility of plasma cell-free DNA next-generation sequencing for diagnosis of infectious diseases in patients with hematological disorders. J Infect. 2023;86(1):14–23. https://doi.org/10.1016/j.jinf.2022.11.020.

    Article  CAS  PubMed  Google Scholar 

  86. Wilson MR, Sample HA, Zorn KC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 2019;380(24):2327–40. https://doi.org/10.1056/NEJMoa1803396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. NCT05290454: https://clinicaltrials.gov/study/NCT05290454. Accessed 15 Nov 2023.

  88. NCT05979350: https://clinicaltrials.gov/study/NCT05979350. Accessed 15 Nov 2023.

  89. NCT03884881: https://clinicaltrials.gov/study/NCT03884881. Accessed 15 Nov 2023.

  90. NCT04946682 https://clinicaltrials.gov/study/NCT04946682. Accessed 15 Nov 2023.

  91. Brenner T, Skarabis A, Stevens P, et al. Optimization of sepsis therapy based on patient-specific digital precision diagnostics using next generation sequencing (DigiSep-Trial)-study protocol for a randomized, controlled, interventional, open-label, multicenter trial. Trials. 2021;22(1):714. https://doi.org/10.1186/s13063-021-05667-x.

    Article  PubMed  PubMed Central  Google Scholar 

  92. NCT05887037 https://clinicaltrials.gov/study/NCT05887037. Accessed 15 Nov 2023.

  93. Perry R, Whitmarsh A, Leach V, et al. A comparison of two assessment tools used in overviews of systematic reviews: ROBIS versus AMSTAR-2. Syst Rev. 2021;10(1):273. https://doi.org/10.1186/s13643-021-01819-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pieper D, Puljak L, González-Lorenzo M, et al. Minor differences were found between AMSTAR 2 and ROBIS in the assessment of systematic reviews including both randomized and nonrandomized studies. J Clin Epidemiol. 2019;108:26–33. https://doi.org/10.1016/j.jclinepi.2018.12.004.

    Article  PubMed  Google Scholar 

  95. Agudelo-Pérez S, Fernández-Sarmiento J, Rivera León D, et al. Metagenomics by next-generation sequencing (mNGS) in the etiological characterization of neonatal and pediatric sepsis: a systematic review. Front Pediatr. 2023;30(11):1011723. https://doi.org/10.3389/fped.2023.1011723.

    Article  Google Scholar 

  96. Szlachta-McGinn A, Douglass KM, Chung UYR, et al. Molecular diagnostic methods versus conventional urine culture for diagnosis and treatment of urinary tract infection: a systematic review and meta-analysis. Eur Urol Open Sci. 2022;44:113–24. https://doi.org/10.1016/j.euros.2022.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Haddad SF, DeSimone DC, Chesdachai S, et al. Utility of metagenomic next-generation sequencing in infective endocarditis: a systematic review. Antibiotics (Basel). 2022;11(12):1798. https://doi.org/10.3390/antibiotics11121798.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Juniie Lan, Jiaxue Wang, Shuimei Sun, Songsong Tan, and Jinyong Cao at Guizhou Provincia People's Hospital for helping with English language and manuscript editing.

Funding

This research received support from the National Natural Science Foundation of China (No. 72064004), the Hospital Pharmaceutical Research Project funded by the China Pharmaceutical Association (CPA-Z05-ZC-2023-002), and the Health Commission Foundation of Guizhou Province (gzwkj2022-224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxing Zhang.

Ethics declarations

Conflicts of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Chen, Y., Ge, L. et al. An umbrella review of the diagnostic value of next-generation sequencing in infectious diseases. Int J Clin Pharm (2024). https://doi.org/10.1007/s11096-024-01704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11096-024-01704-2

Keywords

Navigation