Skip to main content
Log in

Acetylcholine Analog-Modified Albumin Nanoparticles for the Enhanced and Synchronous Brain Delivery of Saponin Components of Panax Notoginseng

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Background

Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations.

Methods

Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood–brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors.

Results

In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively.

Conclusions

This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res. 2020;161:105263.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao G, Xiang Z, Ye T, Yuan Y, Guo Z. Antioxidant activities of Salvia miltiorrhiza and Panax notoginseng. Food Chem. 2006;99(4):767–74.

    Article  CAS  Google Scholar 

  3. Xiang CP, Zhou R, Zhang Y, Zhang JJ, Yang HJ. Research progress on saponins in Panax notoginseng and their molecular mechanism of anti-cerebral ischemia (in Chinese). China J Chin Materia Med. 2020;45(13):3045–54.

    Google Scholar 

  4. Yang F, Ma Q, Matsabisa MG, Chabalala H, Braga FC, Tang M. Panax notoginseng for cerebral ischemia: a systematic review. Am J Chin Med. 2020;48(6):1331–51.

    Article  CAS  PubMed  Google Scholar 

  5. Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–49.

    Article  CAS  PubMed  Google Scholar 

  6. Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B, Brodin B. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2016;36(5):862–90.

    Article  CAS  Google Scholar 

  7. Aleynik A, Gernavage KM, Mourad YSH, Sherman LS, Liu K, Gubenko YA, Rameshwar P. Stem cell delivery of therapies for brain disorders. Clin Transl Med. 2014;3(1):e24.

    Article  Google Scholar 

  8. Kaisar MA, Sajja RK, Prasad S, Abhyankar VV, Liles T, Cucullo L. New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opin Drug Discov. 2017;12(1):89–103.

    Article  PubMed  Google Scholar 

  9. Wang SX, Miao WL, Fang MF, Nan YF, Meng X, Yu J, Zheng XH. Effect of borneol on the tissue distribution of notoginseng R1, ginsenoside Rg1 and Re in rabbits (in Chinese). J Air Force Med Univ. 2009;30(23):2750–2.

    CAS  Google Scholar 

  10. Tezcaner A, Baran ET, Keskin D. Nanoparticles based on plasma proteins for drug delivery applications. Curr Pharm Des. 2016;22(22):3445–54.

    Article  CAS  PubMed  Google Scholar 

  11. Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, Shahreza S, Sori M, Hamblin MR. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res. 2020;43(1):118–33.

    Article  PubMed  Google Scholar 

  13. Hurst R, Rollema H, Bertrand D. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther. 2013;137(1):22–54.

    Article  CAS  PubMed  Google Scholar 

  14. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  15. Wu D, Qin M, Xu D, Wang L, Liu C, Ren J, Zhou G, Chen C, Yang F, Li Y, Zhao Y, Huang R, Pourtaheri S, Kang C, Kamata M, Chen ISY, He Z, Wen J, Chen W, Lu Y. A bioinspired platform for effective delivery of protein therapeutics to the central nervous system. Adv Mater. 2019;31(18):e1807557.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xu D, Wu D, Qin M, Nih LR, Liu C, Cao Z, Ren J, Chen X, He Z, Yu W, Guan J, Duan S, Liu F, Liu X, Li J, Harley D, Xu B, Hou L, Chen ISY, Wen J, Chen W, Pourtaheri S, Lu Y. Efficient delivery of nerve growth factors to the central nervous system for neural regeneration. Adv Mater (Deerfield Beach, Fla). 2019;31(33):e1900727.

    Article  Google Scholar 

  17. Zheng C, Wang Q, Wang Y, Zhao X, Gao K, Liu Q, Zhao Y, Zhang Z, Zheng Y, Cao J, Chen H, Shi L, Kang C, Liu Y, Lu Y. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv Mater (Deerfield Beach, Fla). 2019;31(32):e1902542.

    Article  Google Scholar 

  18. Jiang S-L, Hu L, Wu M, Li L, Shi J-H. Assessment on binding characteristics of ethiprole and a model protein bovine serum albumin (BSA) through various spectroscopic techniques integrated with computer simulation. J Biomol Struct Dyn. 2023;41(16):7862–73.

    Article  CAS  PubMed  Google Scholar 

  19. Lyu S, Wang W. Spectroscopic methodologies and computational simulation studies on the characterization of the interaction between human serum albumin and astragalin. J Biomol Struct Dyn. 2021;39(8):2959–70.

    Article  CAS  PubMed  Google Scholar 

  20. Rahman Y, Afrin S, Tabish M. Interaction of pirenzepine with bovine serum albumin and effect of β-cyclodextrin on binding: A biophysical and molecular docking approach. Arch Biochem Biophys. 2018;652:27–37.

    Article  CAS  PubMed  Google Scholar 

  21. Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D, Gong P, Gao G, Zhang P, Ma Y, Cai L. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. 2014;8(12):12310–22.

    Article  CAS  PubMed  Google Scholar 

  22. Wang W, Huang Y, Zhao S, Shao T, Cheng Y. Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds. Chem Commun (Camb). 2013;49(22):2234–6.

    Article  CAS  PubMed  Google Scholar 

  23. Shukla MK, Behera C, Chakraborty S, Sandha KK, Goswami A, Gupta PN. Tumor micro-environment targeted collagenase-modified albumin nanoparticles for improved drug delivery. J Drug Del Sci Technol. 2022;71:103366.

    Article  CAS  Google Scholar 

  24. Nosrati H, Salehiabar M, Manjili HK, Danafar H, Davaran S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications. Int J Biol Macromol. 2017;108:909–15.

    Article  PubMed  Google Scholar 

  25. Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, Bai S. Delivery of small Interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 2017;19(2):475–86.

    Article  CAS  PubMed  Google Scholar 

  26. Park JS, Choe K, Khan A, Jo MH, Park HY, Kang MH, Park TJ, Kim MO. Establishing co-culture blood-brain barrier models for different neurodegeneration conditions to understand its effect on BBB integrity. Int J Mol Sci. 2023;24(6):5283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127.

    Article  PubMed  Google Scholar 

  28. Jin D, Wang B, Hu R, Su D, Chen J, Zhou H, Lu W, Guo Y, Fang W, Gao S. A novel colon-specific osmotic pump capsule of panax notoginseng saponins (PNS): Formulation, optimization, and in vitro-in vivo evaluation. AAPS PharmSciTech. 2018;19(5):2322–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar P, Wu H, McBride JL, Jung K-E, Hee Kim M, Davidson BL, Kyung Lee S, Shankar P, Manjunath N. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Kim G, Won J, Kim CW, Park JR, Park D. Fabrication and evaluation of ultrasound-responsive emulsion loading paclitaxel for targeted chemotherapy. Langmuir. 2024;40(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  31. Shihan MH, Novo SG, Le Marchand SJ, Wang Y, Duncan MK. A simple method for quantitating confocal fluorescent images. Biochem Biophys Rep. 2021;25:100916.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu X, Chen K, Li Z, Fan H, Xu B, Liu M, Guo L, Xie Z, Liu K, Zhang S, Kou L. Pharmacokinetics and oral bioavailability of panax notoginseng saponins administered to rats using a validated UPLC-MS/MS method. J Agric Food Chem. 2023;71(1):469–79.

    Article  CAS  PubMed  Google Scholar 

  33. Farid NA, Youssef NF, Abdellatef HE, Sharaf YA. Spectrofluorimetric methods for the determination of mirabegron by quenching tyrosine and L-tryptophan fluorophores: Recognition of quenching mechanism by stern volmer relationship, evaluation of binding constants and binding sites. Spectrochim Acta Part A Mol Biomol Spectrosc. 2023;293:122473.

    Article  CAS  Google Scholar 

  34. Paterson KA, Arlt J, Jones AC. Dynamic and static quenching of 2-aminopurine fluorescence by the natural DNA nucleotides in solution. Methods Appl Fluoresc. 2020;8(2):025002.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Li X, Chen M, Yang W, Zhou Z, Liu L, Zhang Q. Interaction of bovine serum albumin with self-assembled nanoparticles of 6-O-cholesterol modified chitosan. Colloids Surf, B. 2012;92:136–41.

    Article  CAS  Google Scholar 

  36. Furuzono T, Ishihara K, Nakabayashi N, Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets. Biomaterials. 2000;21(4):327–33.

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Yang B, Hou Z, Zhang N, Gao Y. A mild method for surface-grafting MPC onto poly(ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency. Mater Sci Eng C Mater Biol Appl. 2019;104:109952.

    Article  CAS  PubMed  Google Scholar 

  38. Xie Z-M, Yu L, Fang L-S. Preparation and characteristic of dextran-BSA antibody and establishment of its ELISA immunoassay. J Immun Immunochem. 2015;36(6):597–612.

    Article  CAS  Google Scholar 

  39. Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsetlin VI, Kasheverov IE, Utkin YN. Three-finger proteins from snakes and humans acting on nicotinic receptors: Old and new. J Neurochem. 2021;158(6):1223–35.

    Article  CAS  PubMed  Google Scholar 

  41. Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA. 2006;103(16):6332–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hernandez-Gonzalez O, Mondragon-Garcia A, Hernandez-Lopez S, Castillo-Rolon DE, Arenas-Lopez G, Tapia D, Mihailescu S. Mechanisms of stimulatory effects of mecamylamine on the dorsal raphe neurons. Brain Res Bull. 2020;164:289–98.

    Article  CAS  PubMed  Google Scholar 

  43. Feng H, Chen W, Zhu C. Pharmacokinetics study of bio-adhesive tablet of Panax notoginseng saponins. Int Arch Med. 2011;4(1):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, Ahmad I. Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm. 2005;59(1):177–87.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Adv Sci (Weinh). 2021;8(10):2003937.

    Article  CAS  PubMed  Google Scholar 

  46. Elezaby RS, Gad HA, Metwally AA, Geneidi AS, Awad GA. Self-assembled amphiphilic core-shell nanocarriers in line with the modern strategies for brain delivery. J Control Release. 2017;261:43–61.

    Article  CAS  PubMed  Google Scholar 

  47. Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–21.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dang Y, An C, Li Y, Han D, Liu X, Zhang F, Xu Y, Zhong H, Karim Khan MK, Zou F, Sun X. Neutrophil-mediated and low density lipoprotein receptor-mediated dual-targeting nanoformulation enhances brain accumulation of scutellarin and exerts neuroprotective effects against ischemic stroke. RSC Adv. 2019;9(3):1299–318.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.

    Article  CAS  PubMed  Google Scholar 

  50. Hou J, Yang X, Li S, Cheng Z, Wang Y, Zhao J, Zhang C, Li Y, Luo M, Ren H, Liang J, Wang J, Wang J, Qin J. Accessing neuroinflammation sites: Monocyte/neutrophil-mediated drug delivery for cerebral ischemia. Sci Adv. 2019;5(7):eaau8301.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang X, Wang S, Bao YR, Li TJ, Yu XM, Meng XS. Multicomponent, multitarget integrated adjustment - Metabolomics study of Qizhiweitong particles curing gastrointestinal motility disorders in mice induced by atropine. J Ethnopharmacol. 2016;189:14–21.

    Article  CAS  PubMed  Google Scholar 

  52. Li T, Wang P, Guo W, Huang X, Tian X, Wu G, Xu B, Li F, Yan C, Liang XJ, Lei H. Natural berberine-based Chinese Herb medicine assembled nanostructures with modified antibacterial application. ACS Nano. 2019;13(6):6770–81.

    Article  CAS  PubMed  Google Scholar 

  53. Wei D, Yang H, Zhang Y, Zhang X, Wang J, Wu X, Chang J. Nano-traditional Chinese medicine: a promising strategy and its recent advances. J Mater Chem B. 2022;10(16):2973–94.

    Article  CAS  PubMed  Google Scholar 

  54. Qiao L, Han M, Gao S, Shao X, Wang X, Sun L, Fu X, Wei Q. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J Mater Chem B. 2020;8(30):6333–51.

    Article  CAS  PubMed  Google Scholar 

  55. Wang M, Chen L, Liu D, Chen H, Tang DD, Zhao YY. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine. Chem Biol Interact. 2017;273:133–41.

    Article  CAS  PubMed  Google Scholar 

  56. Wei G, Dong L, Yang J, Zhang L, Xu J, Yang F, Cheng R, Xu R, Chen S. Integrated metabolomic and transcriptomic analyses revealed the distribution of saponins in Panax notoginseng. Acta Pharm Sin B. 2018;8(3):458–65.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. J Ethnopharmacol. 2019;236:443–65.

    Article  CAS  PubMed  Google Scholar 

  58. Zhai YS, Du SY, Xu B, Lu Y, Gao Y. O/W partition coefficient of PNS and absorption kinetics of it in rat intestine (in Chinese). China J Chin Materia Med. 2010;35(08):984–8.

    CAS  Google Scholar 

  59. Meng X, Wang M, Wang X, Sun G, Ye J, Xu H, Sun X. Suppression of NADPH oxidase- and mitochondrion-derived superoxide by Notoginsenoside R1 protects against cerebral ischemia-reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways. Free Radical Res. 2014;48(7):823–38.

    Article  CAS  Google Scholar 

  60. Shang W, Zhao X, Yang F, Wang D, Lu L, Xu Z, Zhao Z, Cai H, Shen J. Ginsenoside Rg1 nanoparticles induce demethylation of H3K27me3 in VEGF-A and Jagged 1 promoter regions to activate angiogenesis after ischemic stroke. Int J Nanomedicine. 2022;17:5447–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang L, Yin X, Chen YH, Chen Y, Jiang W, Zheng H, Huang FQ, Liu B, Zhou W, Qi LW, Li J. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics. 2021;11(4):1703–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lockman PR, Allen DD. The transport of choline. Drug Dev Ind Pharm. 2002;28(7):749–71.

    Article  CAS  PubMed  Google Scholar 

  63. Meng X, Zhao Y, Han B, Zha C, Zhang Y, Li Z, Wu P, Qi T, Jiang C, Liu Y, Cai J. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11(1):594.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. Int J Biol Macromol. 2020;145:53–63.

    Article  CAS  PubMed  Google Scholar 

  65. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, Koke M, Hage DS. Review: Glycation of human serum albumin. Clinica Chimica Acta Int J Clin Chem. 2013;425:64–76.

    Article  CAS  Google Scholar 

  66. Warnders FJ, Lub-de Hooge MN, de Vries EGE, Kosterink JGW. Influence of protein properties and protein modification on biodistribution and tumor uptake of anticancer antibodies, antibody derivatives, and non-Ig scaffolds. Med Res Rev. 2018;38(6):1837–73.

    Article  CAS  PubMed  Google Scholar 

  67. Singh P, Kim YJ, Singh H, Ahn S, Castro-Aceituno V, Yang DC. In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies. Int J Nanomed. 2017;12:4073–84.

    Article  CAS  Google Scholar 

  68. Ketrat S, Japrung D, Pongprayoon P. Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. J Mol Graph Model. 2020;98:107601.

    Article  CAS  PubMed  Google Scholar 

  69. Gelamo EL, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta Part A Mol Biomol Spectrosc. 2000;56(11):2255–71.

    Article  ADS  Google Scholar 

  70. Sristi FM, Sheikh A, Almalki WH, Talegaonkar S, Dubey SK, Amin MCIM, Sahebkar A, Kesharwani P. Recent advancement on albumin nanoparticles in treating lung carcinoma. J Drug Target. 2023;31(5):486–99.

    Article  CAS  PubMed  Google Scholar 

  71. Tao H-y, Wang R-q, Sheng W-j, Zhen Y-s. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol. 2021;187:24–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81760642; 82060645 and 82260698), the Key Natural Science Foundation of Yunnan Province (202101AT070099), the Yunnan Province Education Department Scientific Research Fund Project (grant NO.2023J0144), the Yunnan Fundamental Research Project (grant NO.202301AU070181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Yuan or Cheng Xiao Wang.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2864 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, L.Y., Liu, Y.C. et al. Acetylcholine Analog-Modified Albumin Nanoparticles for the Enhanced and Synchronous Brain Delivery of Saponin Components of Panax Notoginseng. Pharm Res 41, 513–529 (2024). https://doi.org/10.1007/s11095-024-03670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03670-w

Keywords

Navigation