Skip to main content
Log in

Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Biopharmaceuticals have established an indisputable presence in the pharmaceutical pipeline, enabling highly specific new therapies. However, manufacturing, isolating, and delivering these highly complex molecules to patients present multiple challenges, including the short shelf-life of biologically derived products. Administration of biopharmaceuticals through inhalation has been gaining attention as an alternative to overcome the burdens associated with intravenous administration. Although most of the inhaled biopharmaceuticals in clinical trials are being administered through nebulization, dry powder inhalers (DPIs) are considered a viable alternative to liquid solutions due to enhanced stability. While freeze drying (FD) and spray drying (SD) are currently seen as the most viable solutions for drying biopharmaceuticals, spray freeze drying (SFD) has recently started gaining attention as an alternative to these technologies as it enables unique powder properties which favor this family of drug products. The present review focus on the application of SFD to produce dry powders of biopharmaceuticals, with special focus on inhalation delivery. Thus, it provides an overview of the critical quality attributes (CQAs) of these dry powders. Then, a detailed explanation of the SFD fundamental principles as well as the different existing variants is presented, together with a discussion regarding the opportunities and challenges of SFD as an enabling technology for inhalation-based biopharmaceuticals. Finally, a review of the main formulation strategies and their impact on the stability and performance of inhalable biopharmaceuticals produced via SDF is performed. Overall, this review presents a comprehensive assessment of the current and future applications of SFD in biopharmaceuticals for inhalation delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma G. Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications. J Control Release. 2014;193:324–40. https://doi.org/10.1016/j.jconrel.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  2. Biopharmaceuticals Market Share, Growth - Industry Overview Report 2021 to 2026 With COVID Impact. Mordor Intelligence. https://www.mordorintelligence.com/industry-reports/global-biopharmaceuticals-market-industry. Accessed 2021 Jul 12.

  3. Meininger D. The Increasing Importance of Biologics-Based Drugs in Pharmaceutical Pipelines. Marquette Intellect Prop Law Rev. 2014;18(1):19–20.

    Google Scholar 

  4. Muralidhara BK, Wong M. Critical considerations in the formulation development of parenteral biologic drugs. Drug Discov Today. 2020;25(3):574–81. https://doi.org/10.1016/j.drudis.2019.12.011.

    Article  CAS  PubMed  Google Scholar 

  5. Ziaee A, Albadarin AB, Padrela L, Femmer T, O’Reilly E, Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300–18. https://doi.org/10.1016/j.ejps.2018.10.026.

    Article  CAS  PubMed  Google Scholar 

  6. Maltesen MJ, van de Weert M. Drying methods for protein pharmaceuticals. Drug Discov Today Technol. 2008;5(2–3):81–8.

    Article  Google Scholar 

  7. Haque MA, Adhikari B. Drying and denaturation of proteins in spray drying process. Handb Ind Dry. 2015;971–83.

  8. Ameri M, Maa YF. Spray drying of biopharmaceuticals: Stability and process considerations. Dry Technol. 2006;24(6):763–8.

    Article  CAS  Google Scholar 

  9. Wan F, Maltesen MJ, Bjerregaard S, Foged C, Rantanen J, Yang M. Particle engineering technologies for improving the delivery of peptide and protein drugs. J Drug Deliv Sci Technol. 2013;23(4):355–63.

    Article  CAS  Google Scholar 

  10. Siew A. Exploring the use of aseptic spray drying in the manufacture of biopharmaceutical injectables. Pharm Technol. 2016;40(7):24–7.

    Google Scholar 

  11. Pinto JT, Faulhammer E, Dieplinger J, Dekner M, Makert C, Nieder M, et al. Progress in spray-drying of protein pharmaceuticals: Literature analysis of trends in formulation and process attributes. Dry Technol. 2021;39(11):1415–46.

    Article  CAS  Google Scholar 

  12. Sebastião IB, Bhatnagar B, Tchessalov S, Ohtake S, Plitzko M, Luy B, et al. Bulk dynamic spray freeze-drying part 2: model-based parametric study for spray-freezing process characterization. J Pharm Sci. 2019;108(6):2075–85.

    Article  PubMed  Google Scholar 

  13. Marschall C, Witt M, Hauptmeier B, Friess W. Powder suspensions in non-aqueous vehicles for delivery of therapeutic proteins. Eur J Pharm Biopharm. 2021;161(January):37–49. https://doi.org/10.1016/j.ejpb.2021.01.014.

    Article  CAS  PubMed  Google Scholar 

  14. Ali ME, Lamprecht A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur J Pharm Biopharm. 2014;87(3):510–7. https://doi.org/10.1016/j.ejpb.2014.03.009.

    Article  CAS  PubMed  Google Scholar 

  15. Liang W, Kwok PCL, Chow MYT, Tang P, Mason AJ, Chan HK, et al. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids. Eur J Pharm Biopharm. 2014;86(1):64–73. https://doi.org/10.1016/j.ejpb.2013.05.006.

    Article  CAS  PubMed  Google Scholar 

  16. Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Spray freeze drying: Emerging applications in drug delivery. J Control Release. 2019;300:93–101. https://doi.org/10.1016/j.jconrel.2019.02.044.

    Article  CAS  PubMed  Google Scholar 

  17. Wang SH, Kirwan SM, Abraham SN, Staats HF, Hickey AJ. Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci. 2012;101(1):31–47.

    Article  CAS  PubMed  Google Scholar 

  18. Schiffter H, Condliffe J, Vonhoff S. Spray-freeze-drying of nanosuspensions: The manufacture of insulin particles for needle-free ballistic powder delivery. J R Soc Interface. 2010;7(4):S483-500.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pouya MA, Daneshmand B, Aghababaie S, Faghihi H, Vatanara A. Spray-freeze drying: a suitable method for aerosol delivery of antibodies in the presence of trehalose and cyclodextrins. AAPS PharmSciTech. 2018;19(5):2247–54.

    Article  CAS  PubMed  Google Scholar 

  20. Sebastião IB, Bhatnagar B, Tchessalov S, Ohtake S, Plitzko M, Luy B, et al. Bulk dynamic spray freeze-drying part 1: modeling of droplet cooling and phase change. J Pharm Sci. 2019;108(6):2063–74.

    Article  PubMed  Google Scholar 

  21. Engstrom JD, Simpson DT, Cloonan C, Lai ES, Williams RO, Barrie Kitto G, et al. Stable high surface area lactate dehydrogenase particles produced by spray freezing into liquid nitrogen. Eur J Pharm Biopharm. 2007;65(2):163–74.

    Article  CAS  PubMed  Google Scholar 

  22. Liang W, Chan AYL, Chow MYT, Lo FFK, Qiu Y, Kwok PCL, et al. Spray freeze drying of small nucleic acids as inhaled powder for pulmonary delivery. Asian J Pharm Sci. 2018;13(2):163–72. https://doi.org/10.1016/j.ajps.2017.10.002.

    Article  PubMed  Google Scholar 

  23. Cheow WS, Ng MLL, Kho K, Hadinoto K. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: Effect of freeze-drying adjuvants. Int J Pharm. 2011;404(1–2):289–300. https://doi.org/10.1016/j.ijpharm.2010.11.021.

    Article  CAS  PubMed  Google Scholar 

  24. Mensink MA, Frijlink HW, van der Voort MK, Hinrichs WLJ. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 2017;114:288–95. https://doi.org/10.1016/j.ejpb.2017.01.024.

    Article  CAS  PubMed  Google Scholar 

  25. Heller MC, Carpenter JF, Randolph TW. Manipulation of Lyophilization-Induced Phase Separation: Implications For Pharmaceutical Proteins. Biotechnol Prog. 1997;13(5):590–6. https://doi.org/10.1021/bp970081b.

    Article  CAS  PubMed  Google Scholar 

  26. Yu Z, Garcia AS, Johnston KP, Williams RO. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. Eur J Pharm Biopharm. 2004;58(3):529–37.

    Article  CAS  PubMed  Google Scholar 

  27. Maa YF, Nguyen PA, Sweeney T, Shire SJ, Hsu C. Protein inhalation powders: Spray drying vs spray freeze drying. Vol. 16, Pharmaceutical Research. 1999. p. 249–54.

  28. Jameel F, Hershenson S. Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals. Jameel F, Hershenson S, editors. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010.

  29. Sonner C, Maa YF, Lee G. Spray-freeze-drying for protein powder preparation: Particle characterization and a case study with trypsinogen stability. J Pharm Sci. 2002;91(10):2122–39.

    Article  CAS  PubMed  Google Scholar 

  30. Her JY, Song CS, Lee SJ, Lee KG. Preparation of kanamycin powder by an optimized spray freeze-drying method. Powder Technol. 2010;199(2):159–64. https://doi.org/10.1016/j.powtec.2009.12.018.

    Article  CAS  Google Scholar 

  31. Wang W. Advanced protein formulations. Protein Sci. 2015;24(7):1031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488(1–2):136–53.

    Article  CAS  PubMed  Google Scholar 

  33. Qiu Y, Man RCH, Liao Q, Kung KLK, Chow MYT, Lam JKW. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019;314:102–15.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y, Yan S, Zhang S, Yin Q, Chen XD, Wu WD. Micro-fluidic spray freeze dried ciprofloxacin hydrochloride-embedded dry powder for inhalation. AAPS PharmSciTech. 2022;23(6):211. https://doi.org/10.1208/s12249-022-02371-0.

    Article  CAS  PubMed  Google Scholar 

  35. Bjelošević M, Zvonar Pobirk A, Planinšek O, Ahlin GP. Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation. Int J Pharm. 2020;576: 119029.

    Article  PubMed  Google Scholar 

  36. Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004 Jun;93(6):1390–402. https://linkinghub.elsevier.com/retrieve/pii/S0022354916315234.

  37. Garidel P, Kuhn AB, Schäfer LV, Karow-Zwick AR, Blech M. High-concentration protein formulations: How high is high? Eur J Pharm Biopharm. 2017;119:353–60. https://doi.org/10.1016/j.ejpb.2017.06.029.

    Article  CAS  PubMed  Google Scholar 

  38. Enabling Subcutaneous Delivery of Biologics. ONdrugDelivery Magazine. 2019;(97):6–9.

  39. Dani B, Platz R, Tzannis ST. High Concentration formulation feasibility of human immunoglubulin g for subcutaneous administration. J Pharm Sci. 2007 Jun;96(6):1504–17. https://linkinghub.elsevier.com/retrieve/pii/S0022354916322699.

  40. Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm. 2021;163(March):198–211.

    Article  PubMed  Google Scholar 

  41. Chang RYK, Chow MYT, Khanal D, Chen D, Chan H kim. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev. 2021 May;172:64–79. https://doi.org/10.1016/j.addr.2021.02.017.

  42. Bodier-Montagutelli E, Mayor A, Vecellio L, Respaud R, Heuzé-Vourc’h N. Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opin Drug Deliv. 2018 Aug 3;15(8):729–36.

  43. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. Nanoscale Research Letters.

  44. Schiffter A, Spray-freeze-drying H. in the manufacture of pharmaceuticals. Eur Pharm Rev. 2007;3:67–71.

    Google Scholar 

  45. Saluja V, Amorij JP, Kapteyn JC, de Boer AH, Frijlink HW, Hinrichs WLJ. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144(2):127–33. https://doi.org/10.1016/j.jconrel.2010.02.025.

    Article  CAS  PubMed  Google Scholar 

  46. Rosa M, Lopes C, Melo EP, Singh SK, Geraldes V, Rodrigues MA. Measuring and modeling hemoglobin aggregation below the freezing temperature. J Phys Chem B. 2013;117(30):8939–46.

    Article  CAS  PubMed  Google Scholar 

  47. Daneshmand B, Faghihi H, Amini Pouya M, Aghababaie S, Darabi M, Vatanara A. Application of disaccharides alone and in combination, for the improvement of stability and particle properties of spray-freeze dried IgG. Pharm Dev Technol. 2019;24(4):439–47. https://doi.org/10.1080/10837450.2018.1507039.

    Article  CAS  PubMed  Google Scholar 

  48. Starciuc T, Malfait B, Danede F, Paccou L, Guinet Y, Correia NT, et al. Trehalose or sucrose: which of the two should be used for stabilizing proteins in the solid state? A dilemma investigated by in situ micro-raman and dielectric relaxation spectroscopies during and after freeze-drying. J Pharm Sci. 2020;109(1):496–504. https://doi.org/10.1016/j.xphs.2019.10.055.

    Article  CAS  PubMed  Google Scholar 

  49. Dormenval C, Lokras A, Cano-Garcia G, Wadhwa A, Thanki K, Rose F, et al. Identification of Factors of Importance for Spray Drying of Small Interfering RNA-Loaded Lipidoid-Polymer Hybrid Nanoparticles for Inhalation. Pharm Res. 2019 Oct 2;36(10):142. http://link.springer.com/10.1007/s11095-019-2663-y.

  50. Adali MB, Barresi AA, Boccardo G, Pisano R. Spray freeze-drying as a solution to continuous manufacturing of pharmaceutical products in bulk. Processes. 2020;8(6):709.

    Article  CAS  Google Scholar 

  51. Jensen DMK, Cun D, Maltesen MJ, Frokjaer S, Nielsen HM, Foged C. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release. 2010;142(1):138–45. https://doi.org/10.1016/j.jconrel.2009.10.010.

    Article  CAS  PubMed  Google Scholar 

  52. Xia D, Shrestha N, van de Streek J, Mu H, Yang M. Spray drying of fenofibrate loaded nanostructured lipid carriers. Asian J Pharm Sci. 2016;11(4):507–15. https://doi.org/10.1016/j.ajps.2016.01.001.

    Article  Google Scholar 

  53. Eggerstedt SN, Dietzel M, Sommerfeld M, Süverkrüp R, Lamprecht A. Protein spheres prepared by drop jet freeze drying. Int J Pharm. 2012;438:160–6. https://doi.org/10.1016/j.ijpharm.2012.08.035.

    Article  CAS  PubMed  Google Scholar 

  54. Ito T, Fukuhara M, Okuda T, Okamoto H. Naked pDNA/hyaluronic acid powder shows excellent long-term storage stability and gene expression in murine lungs. Int J Pharm. 2019;2020(574): 118880. https://doi.org/10.1016/j.ijpharm.2019.118880.

    Article  CAS  Google Scholar 

  55. D’Addio SM, Chan JGY, Kwok PCL, Prud’Homme RK, Chan HK. Constant size, variable density aerosol particles by ultrasonic spray freeze drying. Int J Pharm. 2012;427(2):185–91. https://doi.org/10.1016/j.ijpharm.2012.01.048.

  56. Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech. 2014;15(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  57. De Boer AH, Gjaltema D, Hagedoorn P, Frijlink HW. Characterization of inhalation aerosols: A critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm. 2002;249(1–2):219–31.

    Article  PubMed  Google Scholar 

  58. Merkel OM, Kissel T. Nonviral pulmonary delivery of siRNA. Acc Chem Res. 2012;45(7):961–70.

    Article  CAS  PubMed  Google Scholar 

  59. Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv. 2020;17(1):77–96.

    Article  CAS  PubMed  Google Scholar 

  60. Emami F, Vatanara A, Park EJ, Na DH. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10(3):1–22.

    Article  Google Scholar 

  61. Ly A. Atmospheric spray freeze-drying on common biologics and excipients as a comparison to lyophilization. University of Alberta; 2018.

  62. Costantino HR, Firouzabadian L, Hogeland K, Wu C, Beganski C, Carrasquillo KG, et al. Protein spray-freeze drying. effect of atomization conditions on particle size and stability. Pharm Res. 2000;17(11):1374–1382.

  63. Nguyen XC, Herberger JD, Burke PA. Protein powders for encapsulation: A comparison of spray-freeze drying and spray drying of darbepoetin alfa. Pharm Res. 2004;21(3):507–14.

    Article  CAS  PubMed  Google Scholar 

  64. Anandharamakrishnan C. Handbook of Drying for Dairy Products. Chichester, UK: John Wiley & Sons, Ltd; 2017.

  65. Mutukuri TT, Wilson NE, Taylor LS, Topp EM, Zhou QT. Effects of drying method and excipient on the structure and physical stability of protein solids: Freeze drying vs. spray freeze drying. Int J Pharm. 2021 Feb;594:120169. https://doi.org/10.1016/j.ijpharm.2020.120169.

  66. Webb SD, Golledge SL, Cleland JL, Carpenter JF, Randolph TW. Surface adsorption of recombinant human interferon-γ in lyophilized and spray-lyophilized formulations. J Pharm Sci. 2002;91(6):1474–87.

    Article  CAS  PubMed  Google Scholar 

  67. Mueannoom W, Srisongphan A, Taylor KMG, Hauschild S, Gaisford S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur J Pharm Biopharm. 2012;80(1):149–55. https://doi.org/10.1016/j.ejpb.2011.09.016.

    Article  CAS  PubMed  Google Scholar 

  68. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew M Lou, et al. Large Porous Particles for Pulmonary Drug Delivery. Science (80- ). 1997 Jun 20;276(5320):1868–72. https://www.science.org/doi/10.1126/science.276.5320.1868.

  69. Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev. 2021;174(103):140–67. https://doi.org/10.1016/j.addr.2021.04.006.

    Article  CAS  PubMed  Google Scholar 

  70. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19. https://doi.org/10.1016/j.ijpharm.2010.03.017.

    Article  CAS  PubMed  Google Scholar 

  71. Okamoto H, Shiraki K, Yasuda R, Danjo K, Watanabe Y. Chitosan-interferon-β gene complex powder for inhalation treatment of lung metastasis in mice. J Control Release. 2011;150(2):187–95. https://doi.org/10.1016/j.jconrel.2010.12.006.

    Article  CAS  PubMed  Google Scholar 

  72. Langford A, Bhatnagar B, Walters R, Tchessalov S, Ohtake S. Drying technologies for biopharmaceutical applications: Recent developments and future direction. Dry Technol. 2018;36(6):677–84. https://doi.org/10.1080/07373937.2017.1355318.

    Article  CAS  Google Scholar 

  73. Ishwarya SP, Anandharamakrishnan C, Stapley AGF. Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends Food Sci Technol. 2015;41(2):161–81. https://doi.org/10.1016/j.tifs.2014.10.008.

    Article  CAS  Google Scholar 

  74. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1–2):1–60.

    Article  CAS  PubMed  Google Scholar 

  75. Sweeney LG, Wang Z, Loebenberg R, Wong JP, Lange CF, Finlay WH. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. Int J Pharm. 2005;305(1–2):180–5.

    Article  CAS  PubMed  Google Scholar 

  76. Mandato S, Rondet E, Delaplace G, Barkouti A, Galet L, Accart P, et al. Liquids’ atomization with two different nozzles: Modeling of the effects of some processing and formulation conditions by dimensional analysis. Powder Technol. 2012;224(July):323–30. https://doi.org/10.1016/j.powtec.2012.03.014.

    Article  CAS  Google Scholar 

  77. Barron MK, Young TJ, Johnston KP, Williams RO. Investigation of processing parameters of spray freezing into liquid to prepare polyethylene glycol polymeric particles for drug delivery. AAPS PharmSciTech. 2003;4(2):1–13.

    Article  PubMed Central  Google Scholar 

  78. Liang W, Chow MYT, Chow SF, Chan HK, Kwok PCL, Lam JKW. Using two-fluid nozzle for spray freeze drying to produce porous powder formulation of naked siRNA for inhalation. Int J Pharm. 2018;552:67–75. https://doi.org/10.1016/j.ijpharm.2018.09.045.

    Article  CAS  PubMed  Google Scholar 

  79. Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm. 2022 Jul;176(February):1–20. https://linkinghub.elsevier.com/retrieve/pii/S093964112200090X.

  80. Al-Hakim K, Wigley G, Stapley AGF. Phase doppler anemometry studies of spray freezing. Chem Eng Res Des. 2006;84(12 A):1142–51.

  81. Sears J, Huang K, Ray S, Fairbanks H. Effect of liquid properties on the production of aerosols with ultrasound. In: 1977 Ultrasonics Symposium. Phoenix, AZ, USA, USA: IEEE; 1977. p. 131–3.

  82. Liu, H, Altan, M. Science and engineering of droplets: fundamentals and applications. Vol. 55, Applied Mechanics Reviews. 2002.

  83. Yin F, Guo S, Gan Y, Zhang X. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor. Int J Nanomedicine. 2014;9(1):1665–75.

    PubMed  PubMed Central  Google Scholar 

  84. Vonhoff S. The influence of atomization conditions on protein secondary and tertiary structure during microparticle formation by spray-freeze-drying. Friedrich-Alexander-Universität; 2010.

  85. Tatar Turan F, Kahyaoglu T. The effect of an ultrasonic spray nozzle on carbohydrate and protein-based coating materials for blueberry extract microencapsulation. J Sci Food Agric. 2021;101(1):120–30.

    Article  CAS  PubMed  Google Scholar 

  86. O’Sullivan JJ, Norwood EA, O’Mahony JA, Kelly AL. Atomisation technologies used in spray drying in the dairy industry: A review. J Food Eng. 2018;2019(243):57–69. https://doi.org/10.1016/j.jfoodeng.2018.08.027.

    Article  CAS  Google Scholar 

  87. Khaire RA, Gogate PR. Novel approaches based on ultrasound for spray drying of food and bioactive Novel approaches based on ultrasound for spray drying of food and bioactive compounds. Dry Technol. 2020. https://doi.org/10.1080/07373937.2020.1804926.

  88. Vranić E, Sirbubalo M, Tucak A, Hadžiabdić J, Rahić O, Elezović A. Development of inhalable dry gene powders for pulmonary drug delivery by spray-freeze-drying. In: IFMBE Proceedings. Gewerbestrasse, Switzerland: Springer; 2020. p. 533–7.

  89. Anandharamakrishnan C, Ishwarya SP. Essentials and applications of food engineering. Boca Raton, Florida, U.S.A: CRC Press; 2019.

  90. Ferrati S, Wu T, Fuentes O, Brunaugh AD, Kanapuram SR, Smyth HDC. Influence of formulation factors on the aerosol performance and stability of lysozyme powders: a systematic approach. AAPS PharmSciTech. 2018;19(7):2755–66.

    Article  CAS  PubMed  Google Scholar 

  91. Zijlstra GS, Ponsioen BJ, Hummel SA, Sanders N, Hinrichs WLJ, De Boer AH, et al. Formulation and process development of (recombinant human) deoxyribonuclease i as a powder for inhalation. Pharm Dev Technol. 2009;14(4):358–68.

    Article  CAS  PubMed  Google Scholar 

  92. Bi R, Shao W, Wang Q, Zhang N. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target. 2008;16(9):639–48.

    Article  CAS  PubMed  Google Scholar 

  93. Zijlstra GS, Hinrichs WLJ, de Boer AH, Frijlink HW. The role of particle engineering in relation to formulation and de-agglomeration principle in the development of a dry powder formulation for inhalation of cetrorelix. Eur J Pharm Sci. 2004;23(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  94. Milani S, Faghihi H, Roulholamini Najafabadi A, Amini M, Montazeri H, Vatanara A. Hydroxypropyl beta cyclodextrin: a water-replacement agent or a surfactant upon spray freeze-drying of IgG with enhanced stability and aerosolization. Drug Dev Ind Pharm. 2020;46(3):403–11. https://doi.org/10.1080/03639045.2020.1724131.

    Article  CAS  PubMed  Google Scholar 

  95. Emami F, Vatanara A, Vakhshiteh F, Kim Y, Kim TW, Na DH. Amino acid-based stable adalimumab formulation in spray freeze-dried microparticles for pulmonary delivery. J Drug Deliv Sci Technol. 2019;54: 101249. https://doi.org/10.1016/j.jddst.2019.101249.

    Article  CAS  Google Scholar 

  96. Ito T, Okuda T, Takayama R, Okamoto H. Establishment of an Evaluation Method for Gene Silencing by Serial Pulmonary Administration of siRNA and pDNA Powders: Naked siRNA Inhalation Powder Suppresses Luciferase Gene Expression in the Lung. J Pharm Sci. 2019;108(8):2661–7. https://doi.org/10.1016/j.xphs.2019.03.029.

    Article  CAS  PubMed  Google Scholar 

  97. Fukushige K, Tagami T, Naito M, Goto E, Hirai S, Hatayama N, et al. Developing spray-freeze-dried particles containing a hyaluronic acid-coated liposome–protamine–DNA complex for pulmonary inhalation. Int J Pharm. 2019;2020(583): 119338. https://doi.org/10.1016/j.ijpharm.2020.119338.

    Article  CAS  Google Scholar 

  98. Okuda T, Morishita M, Mizutani K, Shibayama A, Okazaki M, Okamoto H. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J Control Release. 2017;2018(279):99–113. https://doi.org/10.1016/j.jconrel.2018.04.003.

    Article  CAS  Google Scholar 

  99. Tran TT, Amalina N, Cheow WS, Hadinoto K. Effects of storage on the stability and aerosolization efficiency of dry powder inhaler formulation of plasmid DNA-Chitosan nanoparticles. J Drug Deliv Sci Technol. 2020;59(May): 101866. https://doi.org/10.1016/j.jddst.2020.101866.

    Article  CAS  Google Scholar 

  100. Suzuki Y, Okuda T, Okamoto H. Development of new formulation dry powder for pulmonary delivery using amino acids to improve stability. Biol Pharm Bull. 2016;39(3):394–400.

    Article  CAS  PubMed  Google Scholar 

  101. Okuda T, Suzuki Y, Kobayashi Y, Ishii T, Uchida S, Itaka K, et al. Development of biodegradable polycation-based inhalable dry gene powders by spray freeze drying. Pharmaceutics. 2015;7(3):233–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Poursina N, Vatanara A, Rouini MR, Gilani K, Rouholamini NA. Systemic delivery of parathyroid hormone (1–34) using spray freeze-dried inhalable particles. Pharm Dev Technol. 2017;22(6):733–9.

    Article  CAS  PubMed  Google Scholar 

  103. Poursina N, Vatanara A, Rouini MR, Gilani K, Najafabadi AR. The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process. Acta Pharm. 2016;66(2):207–18.

    Article  CAS  PubMed  Google Scholar 

  104. Tomar J, Biel C, de Haan CAM, Rottier PJM, Petrovsky N, Frijlink HW, et al. Passive inhalation of dry powder influenza vaccine formulations completely protects chickens against H5N1 lethal viral challenge. Eur J Pharm Biopharm. 2018;133(October):85–95. https://doi.org/10.1016/j.ejpb.2018.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bhide Y, Tomar J, Dong W, de Vries-Idema J, Frijlink HW, Huckriede A, et al. Pulmonary delivery of influenza vaccine formulations in cotton rats: Site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus. Drug Deliv. 2018;25(1):533–45. https://doi.org/10.1080/10717544.2018.1435748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Murugappan S, Patil HP, Kanojia G, Ter Veer W, Meijerhof T, Frijlink HW, et al. Physical and immunogenic stability of spray freeze-dried influenza vaccine powder for pulmonary delivery: Comparison of inulin, dextran, or a mixture of dextran and trehalose as protectants. Eur J Pharm Biopharm. 2013;85(3 PART A):716–25. https://doi.org/10.1016/j.ejpb.2013.07.018.

  107. Audouy SAL, van der Schaaf G, Hinrichs WLJ, Frijlink HW, Wilschut J, Huckriede A. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. Vaccine. 2011;29(26):4345–52. https://doi.org/10.1016/j.vaccine.2011.04.029.

    Article  CAS  PubMed  Google Scholar 

  108. Amorij JP, Saluja V, Petersen AH, Hinrichs WLJ, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine. 2007;25(52):8707–17.

    Article  CAS  PubMed  Google Scholar 

  109. Leung SSY, Parumasivam T, Gao FG, Carrigy NB, Vehring R, Finlay WH, et al. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm Res. 2016;33(6):1486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. D’Addio SM, Chan JGY, Kwok PCL, Benson BR, Prud’Homme RK, Chan HK. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying. Pharm Res. 2013;30(11):2891–901.

  111. Kho K, Hadinoto K. Optimizing aerosolization efficiency of dry-powder aggregates of thermally-sensitive polymeric nanoparticles produced by spray-freeze-drying. Powder Technol. 2011;214(1):169–76. https://doi.org/10.1016/j.powtec.2011.08.010.

    Article  CAS  Google Scholar 

  112. Wang ZL, Finlay WH, Peppler MS, Sweeney LG. Powder formation by atmospheric spray-freeze-drying. Powder Technol. 2006;170(1):45–52.

    Article  CAS  Google Scholar 

  113. Engstrom JD, Simpson DT, Lai ES, Williams RO, Johnston KP. Morphology of protein particles produced by spray freezing of concentrated solutions. Eur J Pharm Biopharm. 2007;65(2):149–62.

    Article  CAS  PubMed  Google Scholar 

  114. Rogers S, Wu WD, Saunders J, Chen XD. Characteristics of milk powders produced by spray freeze drying. Dry Technol. 2008;26(4):404–12.

    Article  CAS  Google Scholar 

  115. Leach WT, Simpson DT, Val TN, Anuta EC, Yu Z, Williams RO, et al. Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release. J Pharm Sci. 2005;94(1):56–69.

    Article  CAS  PubMed  Google Scholar 

  116. Wang Y, Kho K, Cheow WS, Hadinoto K. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles. Int J Pharm. 2012;424(1–2):98–106. https://doi.org/10.1016/j.ijpharm.2011.12.045.

    Article  CAS  PubMed  Google Scholar 

  117. Luthra S, Obert JP, Kalonia DS, Pikal MJ. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer. J Pharm Sci. 2007;96(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  118. Maa YF, Nguyen PAT, Hsu SW. Spray-drying of air-liquid interface sensitive recombinant human growth hormone. J Pharm Sci. 1998;87(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  119. Yu Z, Johnston KP, Williams RO. Spray freezing into liquid versus spray-freeze drying: Influence of atomization on protein aggregation and biological activity. Eur J Pharm Sci. 2006;27(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  120. Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray-freeze dried powder inhalation. J Control Release. 2010;144(2):221–6. https://doi.org/10.1016/j.jconrel.2010.02.018.

    Article  CAS  PubMed  Google Scholar 

  121. Emami F, Vatanara A, Najafabadi AR, Kim Y, Park EJ, Sardari S, et al. Effect of amino acids on the stability of spray freeze-dried immunoglobulin G in sugar-based matrices. Eur J Pharm Sci. 2018;119(April):39–48. https://doi.org/10.1016/j.ejps.2018.04.013.

    Article  CAS  PubMed  Google Scholar 

  122. Gieseler H. Product morphology and drying behavior delineated by a new freeze-drying microbalance. Nuremberg- Erlangen, Germany: Friedrich-Alexander University; 2004.

    Google Scholar 

  123. Li X, Liu Y, Zhang J, You R, Qu J, Li M. Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing. Mater Sci Eng C. 2017;72:394–404. https://doi.org/10.1016/j.msec.2016.11.085.

    Article  CAS  Google Scholar 

  124. Niwa T, Shimabara H, Kondo M, Danjo K. Design of porous microparticles with single-micron size by novel spray freeze-drying technique using four-fluid nozzle. Int J Pharm. 2009;382(1–2):88–97.

    Article  CAS  PubMed  Google Scholar 

  125. Rogers TL, Hu J, Yu Z, Johnston KP, Williams RO. A novel particle engineering technology: Spray-freezing into liquid. Int J Pharm. 2002;242(1–2):93–100.

    Article  CAS  PubMed  Google Scholar 

  126. Hu J, Johnston KP, Williams RO. Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: Organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci. 2003;20(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  127. Yu Z, Rogers TL, Hu J, Johnston KP, Williams RO. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur J Pharm Biopharm. 2002;54(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  128. Dunn EB, Masavage GJ, Sauer HA. Method of freezing solution droplets and the like using immiscible refrigerants of different densities. US; US3653222, 1972.

  129. Wanning S, Süverkrüp R, Lamprecht A. Aerodynamic droplet stream expansion for the production of spray freeze-dried powders. AAPS PharmSciTech. 2017;18(5):1760–9.

    Article  CAS  PubMed  Google Scholar 

  130. Anandharamakrishnan C, Gimbun J, Stapley AGF, Rielly CD. Application of computational fluid dynamics (CFD) simulations to spray-freezing operations. Dry Technol. 31;28(1):94–102.

    Article  CAS  Google Scholar 

  131. Anandharamakrishnan C, Rielly CD, Stapley AGF. Spray-freeze-drying of whey proteins at sub-atmospheric pressures. Dairy Sci Technol. 2010;90(2–3):321–34.

    Article  CAS  Google Scholar 

  132. Borges Sebastião I, Robinson TD, Alexeenko A. Atmospheric spray freeze-drying: numerical modeling and comparison with experimental measurements. J Pharm Sci. 2017;106(1):183–92.

    Article  PubMed  Google Scholar 

  133. Beteta O, Ivanova S. Cool down with liquid nitrogen. Chem Eng Prog. 2015;111(9):30–5.

    Google Scholar 

  134. Yang W, Owens III DE, Williams III RO. Pharmaceutical Cryogenic Technologies. In: Williams III RO, Watts AB, Miller DA, editors. Formulating Poorly Water Soluble Drugs. New York, NY: Springer New York; 2012. (AAPS Advances in the Pharmaceutical Sciences Series; vol. 3).

  135. Chaudhary G, Li R. Freezing of water droplets on solid surfaces: An experimental and numerical study. Exp Therm Fluid Sci. 2014;57:86–93.

    Article  Google Scholar 

  136. Stabenau A, Winter G. Application and drying of protein drug microdroplets on solid surfaces. Pharm Dev Technol. 2007;12(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  137. Sahakijpijarn S, Moon C, Ma X, Su Y, Koleng JJ, Dolocan A, et al. Using thin film freezing to minimize excipients in inhalable tacrolimus dry powder formulations. Int J Pharm. 2020;586: 119490. https://doi.org/10.1016/j.ijpharm.2020.119490.

    Article  CAS  PubMed  Google Scholar 

  138. Beinborn NA, Lirola HL, Williams RO. Effect of process variables on morphology and aerodynamic properties of voriconazole formulations produced by thin film freezing. Int J Pharm. 2012;429(1–2):46–57. https://doi.org/10.1016/j.ijpharm.2012.03.010.

    Article  CAS  PubMed  Google Scholar 

  139. Hufnagel S, Xu H, Sahakijpijarn S, Moon C, Chow LQM, Williams RO, et al. Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying. Int J Pharm. 2022;618(March): 121637. https://doi.org/10.1016/j.ijpharm.2022.121637.

    Article  CAS  PubMed  Google Scholar 

  140. Engstrom JD, Lai ES, Ludher BS, Chen B, Milner TE, Williams RO, et al. Formation of stable submicron protein particles by thin film freezing. Pharm Res. 2008;25(6):1334–46.

    Article  CAS  PubMed  Google Scholar 

  141. Wang JL, Hanafy MS, Xu H, Leal J, Zhai Y, Ghosh D, et al. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int J Pharm. 2021;596(January): 120215. https://doi.org/10.1016/j.ijpharm.2021.120215.

    Article  CAS  PubMed  Google Scholar 

  142. TFF Pharmaceuticals Web Page. https://tffpharma.com/science/. Accessed 2021 Apr 13.

  143. Johnston KP., Engstrom J, Williams III RO. US 2017/0360711 A1 - Formation of Stable Submicron Peptide or Protein Particles by Thin Film Freezing. 2017.

  144. Fonte P, Lino PR, Seabra V, Almeida AJ, Reis S, Sarmento B. Annealing as a tool for the optimization of lyophilization and ensuring of the stability of protein-loaded PLGA nanoparticles. Int J Pharm. 2016;503(1–2):163–73. https://doi.org/10.1016/j.ijpharm.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  145. Straller G, Lee G. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle. Int J Pharm. 2017;532(1):444–9.

    Article  CAS  PubMed  Google Scholar 

  146. Webb SD, Cleland JL, Carpenter JF, Randolph TW. Effects of annealing lyophilized and spray-lyophilized formulations of recombinant human interferon-γ. J Pharm Sci. 2003;92(4):715–29.

    Article  CAS  PubMed  Google Scholar 

  147. Severo MG, Zeferino AS, Soccol CR. Development of a rabies vaccine in cell culture for veterinary use in the lyophilized Form. Current Developments in Biotechnology and Bioengineering: Human and Animal Health Applications. Elsevier B.V.; 2017.

  148. Pardeshi S, More M, Patil P, Pardeshi C, Deshmukh P, Mujumdar A, et al. A meticulous overview on drying-based (spray-, freeze-, and spray-freeze) particle engineering approaches for pharmaceutical technologies. Dry Technol. 2021;0(0):1–45. https://doi.org/10.1080/07373937.2021.1893330.

  149. Kanojia G, Ten HR, Bakker A, Wagner K, Frijlink HW, Kersten GFA, et al. The production of a stable Infliximab powder: The evaluation of spray and freeze-drying for production. PLoS ONE. 2016;11(10):1–14.

    Article  Google Scholar 

  150. MERIDION Technologies. http://meridion-technologies.de/index.php. Accessed 2021 Jul 12.

  151. IMA Group Web Page. https://ima.it/pharma/machine/lynfinity/. Accessed 2021 Mar 26.

  152. Pisano R, Arsiccio A, Capozzi LC, Trout BL. Achieving continuous manufacturing in lyophilization: Technologies and approaches. Eur J Pharm Biopharm. 2019;142(March):265–79. https://doi.org/10.1016/j.ejpb.2019.06.027.

    Article  CAS  PubMed  Google Scholar 

  153. Chen Y, Mutukuri TT, Wilson NE, Zhou QT. Pharmaceutical protein solids: Drying technology, solid-state characterization and stability. Adv Drug Deliv Rev. 2021;172:211–33. https://doi.org/10.1016/j.addr.2021.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Desai TR, Wong JP, Hancock REW, Finlay WH. A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. J Pharm Sci. 2002;91(2):482–91.

    Article  CAS  PubMed  Google Scholar 

  155. Kasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78(2):248–63. https://doi.org/10.1016/j.ejpb.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  156. Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release. 2021;330(October):977–91. https://doi.org/10.1016/j.jconrel.2020.11.005.

    Article  CAS  PubMed  Google Scholar 

  157. Hu J, Rogers TL, Brown J, Young T, Johnston KP, Williams RO. Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology. Pharm Res. 2002;19(9):1278–84.

    Article  CAS  PubMed  Google Scholar 

  158. Wang B, Timilsena YP, Blanch E, Adhikari B. Characteristics of bovine lactoferrin powders produced through spray and freeze drying processes. Int J Biol Macromol. 2017;95:985–94. https://doi.org/10.1016/j.ijbiomac.2016.10.087.

    Article  CAS  PubMed  Google Scholar 

  159. Grasmeijer N, Tiraboschi V, Woerdenbag HJ, Frijlink HW, Hinrichs WLJ. Identifying critical process steps to protein stability during spray drying using a vibrating mesh or a two-fluid nozzle. Eur J Pharm Sci. 2018;2019(128):152–7. https://doi.org/10.1016/j.ejps.2018.11.027.

    Article  CAS  Google Scholar 

  160. Lo YL, Tsai JC, Kuo JH. Liposomes and disaccharides as carriers in spray-dried powder formulations of superoxide dismutase. J Control Release. 2004;94(2–3):259–72.

    Article  CAS  PubMed  Google Scholar 

  161. Kanojia G, ten Have R, Soema PC, Frijlink H, Amorij JP, Kersten G. Developments in the formulation and delivery of spray dried vaccines. Hum Vaccines Immunother. 2017;13(10):2364–78.

    Article  Google Scholar 

  162. Massant J, Fleurime S, Batens M, Vanhaerents H, Van den Mooter G. Formulating monoclonal antibodies as powders for reconstitution at high concentration using spray-drying: Trehalose/amino acid combinations as reconstitution time reducing and stability improving formulations. Eur J Pharm Biopharm. 2020;156:131–42. https://doi.org/10.1016/j.ejpb.2020.08.019.

    Article  CAS  PubMed  Google Scholar 

  163. Chow MYT, Qiu Y, Liao Q, Kwok PCL, Chow SF, Chan HK, et al. High siRNA loading powder for inhalation prepared by co-spray drying with human serum albumin. Int J Pharm. 2019;572(September):118818. https://doi.org/10.1016/j.ijpharm.2019.118818

  164. Wu J, Wu L, Wan F, Rantanen J, Cun D, Yang M. Effect of thermal and shear stresses in the spray drying process on the stability of siRNA dry powders. Int J Pharm. 2019;566(May):32–9. https://doi.org/10.1016/j.ijpharm.2019.05.019.

    Article  CAS  PubMed  Google Scholar 

  165. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of buffers in protein formulations. J Pharm Sci. 2017;106(3):713–33. https://doi.org/10.1016/j.xphs.2016.11.014.

    Article  CAS  PubMed  Google Scholar 

  166. Parkins DA, Lashmar UT. The formulation of biopharmaceutical products. Pharm Sci Technol Today. 2000;3(4):129–37.

    Article  CAS  PubMed  Google Scholar 

  167. Ugwu SO, Apte SP. The effect of buffers on protein conformational stability. Pharm Technol. 2004;28:86–113.

    CAS  Google Scholar 

  168. Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;109(1):169–90.

    Article  PubMed  Google Scholar 

  169. Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev. 2011;63(13):1160–71. https://doi.org/10.1016/j.addr.2011.06.015.

    Article  CAS  PubMed  Google Scholar 

  170. Agarkhed M, O’Dell C, Hsieh MC, Zhang J, Goldstein J, Srivastava A. Effect of surfactants on mechanical, thermal, and photostability of a monoclonal antibody. AAPS PharmSciTech. 2018;19(1):79–92.

    Article  CAS  PubMed  Google Scholar 

  171. Hawe A, Filipe V, Jiskoot W. Fluorescent molecular rotors as dyes to characterize polysorbate-containing IgG formulations. Pharm Res. 2010;27(2):314–26.

    Article  CAS  PubMed  Google Scholar 

  172. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  CAS  PubMed  Google Scholar 

  173. Ablinger E, Leitgeb S, Zimmer A. Differential scanning fluorescence approach using a fluorescent molecular rotor to detect thermostability of proteins in surfactant-containing formulations. Int J Pharm. 2013;441(1–2):255–60. https://doi.org/10.1016/j.ijpharm.2012.11.035.

    Article  CAS  PubMed  Google Scholar 

  174. Serno T, Geidobler R, Winter G. Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev. 2011;63(13):1086–106. https://doi.org/10.1016/j.addr.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  175. Rahmati MR, Vatanara A, Parsian AR, Gilani K, Khosravi KM, Darabi M, et al. Effect of formulation ingredients on the physical characteristics of salmeterol xinafoate microparticles tailored by spray freeze drying. Adv Powder Technol. 2013;24(1):36–42. https://doi.org/10.1016/j.apt.2012.01.007.

    Article  CAS  Google Scholar 

  176. Tsukamoto M, Okuda T, Okamoto H, Higuchi Y, Kawakami S, Yamashita F, et al. Bovine serum albumin as a lyoprotectant for preparation of DNA dry powder formulations using the spray-freeze drying method. Biol Pharm Bull. 2012;35(7):1178–81.

    Article  CAS  PubMed  Google Scholar 

  177. Arsiccio A, Paladini A, Pattarino F, Pisano R. Designing the optimal formulation for biopharmaceuticals: a new approach combining molecular dynamics and experiments. J Pharm Sci. 2019;108(1):431–8. https://doi.org/10.1016/j.xphs.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  178. Wang W qiong, Sheng H bo, Zhou J yang, Yuan P pei, Zhang X feng, Lu M lin, et al. The effect of a variable initial pH on the structure and rheological properties of whey protein and monosaccharide gelation via the Maillard reaction. Int Dairy J. 2021;113:104896. https://doi.org/10.1016/j.idairyj.2020.104896.

  179. Semyonov D, Ramon O, Kaplun Z, Levin-Brener L, Gurevich N, Shimoni E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int. 2010;43(1):193–202. https://doi.org/10.1016/j.foodres.2009.09.028.

    Article  CAS  Google Scholar 

  180. Tonnis WF, Mensink MA, De Jager A, Van Der Voort MK, Frijlink HW, Hinrichs WLJ. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Mol Pharm. 2015;12(3):684–94.

    Article  CAS  PubMed  Google Scholar 

  181. Garzon-Rodriguez W, Koval RL, Chongprasert S, Krishnan S, Randolph TW, Warne NW, et al. Optimizing storage stability of lyophilized recombinant human interleukin-11 with disaccharide/hydroxyethyl starch mixtures. J Pharm Sci. 2004;93(3):684–96.

    Article  CAS  PubMed  Google Scholar 

  182. Allison SD, Manning MC, Randolph TW, Middleton K, Davis A, Carpenter JF. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran. J Pharm Sci. 2000;89(2):199–214.

    Article  CAS  PubMed  Google Scholar 

  183. Rochelle C, Lee G. Dextran or hydroxyethyl starch in spray-freeze-dried trehalose/mannitol microparticles intended as ballistic particulate carriers for proteins. J Pharm Sci. 2007;96(9):2296–309.

    Article  CAS  PubMed  Google Scholar 

  184. Otake H, Okuda T, Hira D, Kojima H, Shimada Y, Okamoto H. Inhalable spray-freeze-dried powder with l-leucine that delivers particles independent of inspiratory flow pattern and inhalation device. Pharm Res. 2016;33(4):922–31.

    Article  CAS  PubMed  Google Scholar 

  185. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ito T, Okuda T, Takashima Y, Okamoto H. Naked pDNA inhalation powder composed of hyaluronic acid exhibits high gene expression in the lungs. Mol Pharm. 2019;16(2):489–97.

    Article  CAS  PubMed  Google Scholar 

  187. Kuo J hua S, Hwang R. Preparation of DNA dry powder for non-viral gene delivery by spray-freeze drying: effect of protective agents (polyethyleneimine and sugars) on the stability of DNA. J Pharm Pharmacol. 2004;56(1):27–33.

  188. Thomas F. Taking a breath: advances in inhaled biologics. BioPharm Int. 2021;34(4):18–20.

    Google Scholar 

  189. Reynolds T, de Zafra C, Kim A, Gelzleichter TR. Overview of Biopharmaceuticals and Comparison with Small-molecule Drug Development. In: Nonclinical Development of Novel Biologics, Biosimilars, Vaccines and Specialty Biologics. Elsevier; 2013. p. 3–33.

  190. Filipe V, Hawe A, Carpenter JF, Jiskoot W. Analytical approaches to assess the degradation of therapeutic proteins. Trends Anal Chem. 2013;49:118–25.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by Hovione under the doctoral fellowship PBID/BDE/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henriques.

Ethics declarations

Conflict of Interest Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farinha, S., Sá, J.V., Lino, P.R. et al. Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm Res 40, 1115–1140 (2023). https://doi.org/10.1007/s11095-022-03442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03442-4

Keywords

Navigation