Skip to main content
Log in

Pyrvinium Pamoate Use in a B cell Acute Lymphoblastic Leukemia Model of the Bone Tumor Microenvironment

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pyrvinium pamoate (PP) is an anthelmintic drug that has been found to have anti-cancer activity in several cancer types. In the present study, we evaluated PP for potential anti-leukemic activity in B cell acute lymphoblastic leukemia (ALL) cell lines, in an effort to evaluate the repurposing potential of this drug in leukemia.

Methods

ALL cells were treated with PP at various concentrations to determine its effect on cell proliferation. Metabolic function was tested by evaluating Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). Lastly, 3D spheroids were grown, and PP was reformulated into nanoparticles to evaluate distribution effectiveness.

Results

PP was found to inhibit ALL proliferation, with varied selectivity to different ALL cell subtypes. We also found that PP’s cell death activity was specific for leukemic cells, as primary normal immune cells were resistant to PP-mediated cell death. Metabolic studies indicated that PP, in part, inhibits mitochondrial oxidative phosphorylation. To increase the targeting of PP to a hypoxic bone tumor microenvironment (BTME) niche, we successfully encapsulated PP in a nanoparticle drug delivery system and demonstrated that it retained its anti-leukemic activity in a hemosphere assay.

Conclusion

We have demonstrated that PP is a novel therapeutic lead compound that counteracts the respiratory reprogramming found in refractory ALL cells and can be effectively formulated into a nanoparticle delivery system to target the BTME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2-DG:

2-deoxyglucose

ALL:

B cell acute lymphoblastic leukemia

ATP:

Adenosine triphosphate

BM:

Bone marrow

BMSC:

Bone marrow stromal cells

BTME:

Bone tumor microenvironment

ECAR:

Extracellular acidification rate

ETC:

Electron transport chain

FBS:

Fetal bovine serum

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

HK2:

Hexokinase II

HOB:

Human osteoblasts

IPA:

Ingenuity Pathway Analysis

M:

Monoculture

MRD:

Minimal residual disease

NP:

Nanoparticles

OCR:

Oxygen consumption rate

OXPHOS:

Oxidative phosphorylation

PD:

Phase dim, buried co-culture ALL cells

PP:

Pyrvinium pamoate

TBS:

Tris-buffered saline

S:

Co-culture ALL cells in suspension

References

  1. Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350(15):1535–48.

    Article  CAS  PubMed  Google Scholar 

  2. Espinoza-Hernandez L, Cruz-Rico J, Benitez-Aranda H, Martinez-Jaramillo G, Rodriguez-Zepeda MC, Velez-Ruelas MA, et al. In vitro characterization of the hematopoietic system in pediatric patients with acute lymphoblastic leukemia. Leuk Res. 2001;25(4):295–303.

    Article  CAS  PubMed  Google Scholar 

  3. Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci. 2018;75(3):417–46.

  4. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. J Clin Oncol. 2012;30(14):1663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Medical Research Council of the United Kingdom adult ALLWP, Eastern Cooperative Oncology G. outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–50.

    Article  CAS  PubMed  Google Scholar 

  6. Pogorzala M, Kubicka M, Rafinska B, Wysocki M, Styczynski J. Drug-resistance profile in multiple-relapsed childhood acute lymphoblastic leukemia. Anticancer Res. 2015;35(10):5667–70.

    CAS  PubMed  Google Scholar 

  7. Sutton R, Venn NC, Tolisano J, Bahar AY, Giles JE, Ashton LJ, et al. Australian, New Zealand Children's Oncology G. clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. Br J Haematol. 2009;146(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  8. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood. 2008;111(12):5477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Slone WL, Moses BS, Evans R, Piktel D, Martin KH, Petros W, et al. Modeling chemotherapy resistant leukemia in vitro. J Vis Exp. 2016;108:e53645.

    Google Scholar 

  10. Moses BS, Slone WL, Thomas P, Evans R, Piktel D, Angel PM, et al. Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype. Exp Hematol. 2016;44(1):50-59 e51-52.

    Article  CAS  Google Scholar 

  11. Moses BS, Evans R, Slone WL, Piktel D, Martinez I, Craig MD, et al. Bone marrow microenvironment niche regulates miR-221/222 in acute lymphoblastic leukemia. Mol Cancer Res. 2016;14(10):909–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slone WL, Moses BS, Hare I, Evans R, Piktel D, Gibson LF. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy. Oncotarget. 2016;7(17):23439–53.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ishii I, Harada Y, Kasahara T. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Front Oncol. 2012;2:137.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tomitsuka E, Kita K, Esumi H. An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system--a unique mitochondrial energy metabolism in tumour microenvironments. J Biochem. 2012;152(2):171–83.

    Article  CAS  PubMed  Google Scholar 

  15. Bosc C, Selak MA, Sarry JE. Resistance is futile: targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab. 2017;26(5):705-07.

  16. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9-15. 

  17. Harada Y, Ishii I, Hatake K, Kasahara T. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer Lett. 2012;319(1):83-8.

  18. Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tarazona S, Furio-Tari P, Turra D, Pietro AD, Nueda MJ, Ferrer A, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015;43(21):e140.

    PubMed  PubMed Central  Google Scholar 

  21. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shepherd DL, Hathaway QA, Pinti MV, Nichols CE, Durr AJ, Sreekumar S, et al. Exploring the mitochondrial microRNA import pathway through polynucleotide Phosphorylase (PNPase). J Mol Cell Cardiol. 2017;110:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hathaway QA, Nichols CE, Shepherd DL, Stapleton PA, McLaughlin SL, Stricker JC, et al. Maternal-engineered nanomaterial exposure disrupts progeny cardiac function and bioenergetics. Am J Physiol Heart Circ Physiol. 2017;312(3):H446–58.

    Article  PubMed  Google Scholar 

  24. Nair RR, Piktel D, Geldenhuys WJ, Gibson LF. Combination of cabazitaxel and plicamycin induces cell death in drug resistant B-cell acute lymphoblastic leukemia. Leuk Res. 2018;72:59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin C, He D, Chen S, Tan X, Sang N. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget. 2016;7(30):47494–510.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem. 1999;274(23):16188–97.

    Article  CAS  PubMed  Google Scholar 

  27. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7(1):10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tchoryk A, Taresco V, Argent RH, Ashford M, Gellert PR, Stolnik S, et al. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem. 2019;30(5):1371–84.

    Article  CAS  PubMed  Google Scholar 

  29. Harada Y, Ishii I, Hatake K, Kasahara T. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer Lett. 2012;319(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  30. Xiang W, Cheong JK, Ang SH, Teo B, Xu P, Asari K, et al. Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration. Oncotarget. 2015;6(32):33769–80.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64.

    Article  CAS  PubMed  Google Scholar 

  32. Chan LN, Chen Z, Braas D, Lee JW, Xiao G, Geng H, et al. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature. 2017;542(7642):479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iwama Y, Eguchi M. Quantitative evaluation of leukemic mitochondria with a computer-controlled image analyzer. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;51(5):375–84.

    Article  CAS  PubMed  Google Scholar 

  34. Boag JM, Beesley AH, Firth MJ, Freitas JR, Ford J, Hoffmann K, et al. Altered glucose metabolism in childhood pre-B acute lymphoblastic leukaemia. Leukemia. 2006;20(10):1731–7.

    Article  CAS  PubMed  Google Scholar 

  35. Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem. 2001;276(46):43407–12.

    Article  CAS  PubMed  Google Scholar 

  36. Fu X, Liu W, Huang Q, Wang Y, Li H, Xiong Y. Targeting mitochondrial respiration selectively sensitizes pediatric acute lymphoblastic leukemia cell lines and patient samples to standard chemotherapy. Am J Cancer Res. 2017;7(12):2395–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Carrella D, Manni I, Tumaini B, Dattilo R, Papaccio F, Mutarelli M, et al. Computational drugs repositioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds. Oncotarget. 2016;7(37):58743–58.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lim M, Otto-Duessel M, He M, Su L, Nguyen D, Chin E, et al. Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium. ACS Chem Biol. 2014;9(3):692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Esumi H, Lu J, Kurashima Y, Hanaoka T. Antitumor activity of pyrvinium pamoate, 6-(dimethylamino)-2-[2-(2,5-dimethyl-1-phenyl-1H-pyrrol-3-yl)ethenyl]-1-methyl-qu inolinium pamoate salt, showing preferential cytotoxicity during glucose starvation. Cancer Sci. 2004;95(8):685–90.

    Article  CAS  PubMed  Google Scholar 

  40. Xu F, Zhu Y, Lu Y, Yu Z, Zhong J, Li Y, et al. Anthelmintic pyrvinium pamoate blocks Wnt/beta-catenin and induces apoptosis in multiple myeloma cells. Oncol Lett. 2018;15(4):5871–8.

    PubMed  PubMed Central  Google Scholar 

  41. Smith TC, Kinkel AW, Gryczko CM, Goulet JR. Absorption of pyrvinium pamoate. Clin Pharmacol Ther. 1976;19(6):802–6.

    Article  CAS  PubMed  Google Scholar 

  42. Jones JO, Bolton EC, Huang Y, Feau C, Guy RK, Yamamoto KR, et al. Non-competitive androgen receptor inhibition in vitro and in vivo. Proc Natl Acad Sci U S A. 2009;106(17):7233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carroll RT, Bhatia D, Geldenhuys W, Bhatia R, Miladore N, Bishayee A, et al. Brain-targeted delivery of Tempol-loaded nanoparticles for neurological disorders. J Drug Target. 2010;18(9):665–74.

    Article  CAS  PubMed  Google Scholar 

  44. Loskutov YV, Griffin CL, Marinak KM, Bobko A, Margaryan NV, Geldenhuys WJ, et al. LPA signaling is regulated through the primary cilium: a novel target in glioblastoma. Oncogene. 2018;37(11):1457–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raez LE, Papadopoulos K, Ricart AD, Chiorean EG, Dipaola RS, Stein MN, et al. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2013;71(2):523–30.

    Article  CAS  PubMed  Google Scholar 

  46. Martinez-Outschoorn UE, Pestell RG, Howell A, Tykocinski ML, Nagajyothi F, Machado FS, et al. Energy transfer in "parasitic" cancer metabolism: mitochondria are the powerhouse and Achilles' heel of tumor cells. Cell Cycle. 2011;10(24):4208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to acknowledge Kathleen Brundage, director of the WVU Flow Cytometry & Single Cell Core Facility, for her assistance in acquisition of the flow cytometry data and Aniello Infante, lead bioinformatician with the WVU Genomics Core Facility, for his assistance with gene expression analysis. This work was supported by the Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, Community Foundation for the Ohio Valley Whipkey Trust, NIH grants U54GM104942, P30GM103488, P20GM103434, RO1HL128485, S10OD016165, R42AR074812, R44CA221554, R41NS110070 and P20 GM109098; and AHA grant 17PRE33660333. The authors declare that they have no conflicts of interest with the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura F. Gibson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM1

(DOCX 1143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, R.R., Piktel, D., Hathaway, Q.A. et al. Pyrvinium Pamoate Use in a B cell Acute Lymphoblastic Leukemia Model of the Bone Tumor Microenvironment. Pharm Res 37, 43 (2020). https://doi.org/10.1007/s11095-020-2767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-2767-4

Key words

Navigation