Skip to main content

Advertisement

Log in

Photo-Degradation of Therapeutic Proteins: Mechanistic Aspects

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose: Therapeutic proteins are sensitive to photo-degradation by UV A and visible light. As none of the essential amino acids exhibits significant absorption in the UV A and visible light regions, the underlying mechanisms of photo-degradation induced by UV A and visible light are not well understood. This review addresses potential mechanisms, by which protein structure, oxidative modifications or impurities can promote the photo-degradation of therapeutic proteins during the exposure to UV A and visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

AGE:

Advanced glycation end products

CT:

Charge transfer

Di-Tyr:

Dityrosine

DOLD:

Deoxyglucason-lysine dimer

GOLD:

Glyoxal-lysine dimer

IgG1:

Immunoglobulin 1

Kyn:

Kynurenine

MOLD:

Methyl glyoxal-lysine dimer

NFK:

N-formylkynurenine

References

  1. Davies MJ, Truscott RJ. Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B. 2001;63(1–3):114–25.

    CAS  PubMed  Google Scholar 

  2. Leinisch F, Mariotti M, Rykaer M, Lopez-Alarcon C, Hagglund P, Davies MJ. Peroxyl radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues. Free Radic Biol Med. 2017;112:240–52.

    CAS  PubMed  Google Scholar 

  3. Mariotti M, Leinisch F, Leeming DJ, Svensson B, Davies MJ, Hagglund P. Mass-spectrometry-based identification of cross-links in proteins exposed to photo-oxidation and Peroxyl radicals using (18)O labeling and optimized tandem mass spectrometry fragmentation. J Proteome Res. 2018;17(6):2017–27.

    CAS  PubMed  Google Scholar 

  4. Kang H, Tolbert TJ, Schöneich C. Photoinduced tyrosine side chain fragmentation in IgG4-fc: mechanisms and solvent isotope effects. Mol Pharm. 2019;16(1):258–72.

    CAS  PubMed  Google Scholar 

  5. Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci. 2006;5(2):215–37.

    CAS  PubMed  Google Scholar 

  6. Roy D, Dillon J, Wada E, Chaney W, Spector A. Nondisulfide polymerization of gamma- and beta-crystallins in the human lens. Proc Natl Acad Sci U S A. 1984;81(9):2878–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Korlimbinis A, Hains PG, Truscott RJ, Aquilina JA. 3-Hydroxykynurenine oxidizes alpha-crystallin: potential role in cataractogenesis. Biochemistry. 2006;45(6):1852–60.

    CAS  PubMed  Google Scholar 

  8. Korlimbinis A, Truscott RJ. Identification of 3-hydroxykynurenine bound to proteins in the human lens. A possible role in age-related nuclear cataract. Biochemistry. 2006;45(6):1950–60.

    CAS  PubMed  Google Scholar 

  9. Kerwin BA, Remmele RL. Protect from light: Photodegradation and protein biologics. J Pharm Sci. 2007;96(6):1468–79.

    CAS  PubMed  Google Scholar 

  10. Baptista MS, Cadet J, Di Mascio P, Ghogare AA, Greer A, Hamblin MR, et al. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol. 2017;93(4):912–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mozziconacci O, Schöneich C. Effect of conformation on the photodegradation of Trp- and cystine-containing cyclic peptides: octreotide and somatostatin. Mol Pharm. 2014;11(10):3537–46.

    CAS  PubMed  Google Scholar 

  12. Mozziconacci O, Okbazghi S, More AS, Volkin DB, Tolbert T, Schöneich C. Comparative evaluation of the chemical stability of 4 well-defined immunoglobulin G1-fc Glycoforms. J Pharm Sci. 2016;105(2):575–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sreedhara A, Lau K, Li C, Hosken B, Macchi F, Zhan D, et al. Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway. Mol Pharm. 2013;10(1):278–88.

    CAS  PubMed  Google Scholar 

  14. Adem YT, Molina P, Liu H, Patapoff TW, Sreedhara A, Esue O. Hexyl glucoside and hexyl maltoside inhibit light-induced oxidation of tryptophan. J Pharm Sci. 2014;103(2):409–16.

    CAS  PubMed  Google Scholar 

  15. Bane J, Mozziconacci O, Yi L, Wang YJ, Sreedhara A, Schöneich C. Photo-oxidation of IgG1 and model peptides: detection and analysis of triply oxidized his and Trp side chain cleavage products. Pharm Res. 2017;34(1):229–42.

    CAS  PubMed  Google Scholar 

  16. Lei M, Carcelen T, Walters BT, Zamiri C, Quan C, Hu Y, et al. Structure-based correlation of light-induced Histidine reactivity in a model protein. Anal Chem. 2017;89(13):7225–31.

    CAS  PubMed  Google Scholar 

  17. Lei M, Quan C, Wang YJ, Kao YH, Schöneich C. Light-induced covalent buffer adducts to Histidine in a model protein. Pharm Res. 2018;35(3):67.

    PubMed  Google Scholar 

  18. Liu M, Zhang Z, Cheetham J, Ren D, Zhou ZS. Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing (1)(8)O-labeling and mass spectrometry. Anal Chem. 2014;86(10):4940–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Correia M, Neves-Petersen MT, Jeppesen PB, Gregersen S, Petersen SB. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis. PLoS One. 2012;7(12):e50733.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mallaney M, Wang SH, Sreedhara A. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors. Biotechnol Prog. 2014;30(3):562–70.

    CAS  PubMed  Google Scholar 

  21. Sreedhara A, Yin J, Joyce M, Lau K, Wecksler AT, Deperalta G, et al. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur J Pharm Biopharm. 2016;100:38–46.

    CAS  PubMed  Google Scholar 

  22. Luis LM, Hu Y, Zamiri C, Sreedhara A. Determination of the acceptable ambient light exposure during drug product manufacturing for long-term stability of monoclonal antibodies. PDA J Pharm Sci Technol. 2018;72(4):393–403.

    CAS  PubMed  Google Scholar 

  23. Weber G. Fluorescence-polarization spectrum and electronic-energy transfer in proteins. Biochem J. 1960;75:345–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber G. Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan and related compounds. Biochem J. 1960;75:335–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Donovan JW, Laskowski M, Scheraga HA. Effects of Charged Groups on Chromophores of Lysozyme and of Amino Acids. J Am Chem Soc. 1961;83(12):2686-&.

  26. Ananthanarayanan VS, Bigelow CC. Unusual difference spectra of proteins containing tryptophan. I. Studies with model compounds. Biochemistry. 1969;8(9):3717–23.

    CAS  PubMed  Google Scholar 

  27. Ananthanarayanan VS, Bigelow CC. Unusual difference spectra of proteins containing tryptophan. II. Studies with proteins. Biochemistry. 1969;8(9):3723–8.

    CAS  PubMed  Google Scholar 

  28. Donovan JW. Changes in ultraviolet absorption produced by alteration of protein conformation. J Biol Chem. 1969;244(8):1961–7.

    CAS  PubMed  Google Scholar 

  29. Tullis R, Price PA. The effect of calcium and magnesium on the ultraviolet spectrum of bovine pancreatic deoxyribonuclease a. J Biol Chem. 1974;249(16):5033–7.

    CAS  PubMed  Google Scholar 

  30. Stair R, Johnston RG, Bagg TC. Spectral distribution of energy from the Sun. J Res Natl Bur Stand. 1954;53(2):113–9.

    Google Scholar 

  31. Tian JD, Duan ZG, Ren WH, Han Z, Tang YD. Simple and effective calculations about spectral power distributions of outdoor light sources for computer vision. Opt Express. 2016;24(7):7266–86.

    PubMed  Google Scholar 

  32. Baertschi SW, Clapham D, Foti C, Jansen PJ, Kristensen S, Reed RA, et al. Implications of in-use photostability: proposed guidance for photostability testing and labeling to support the administration of photosensitive pharmaceutical products, part 1: drug products administered by injection. J Pharm Sci. 2013;102(11):3888–99.

    CAS  PubMed  Google Scholar 

  33. Aube M, Roby J, Kocifaj M. Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility. PLoS One. 2013;8(7):e67798.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Creed D. The Photophysics and Photochemistry of the near-Uv Absorbing Amino-Acids .1. Tryptophan and Its Simple Derivatives. Photochem Photobiol 1984;39(4):537–562.

  35. Mccormick JP, Thomason T. Near-ultraviolet Photooxidation of tryptophan - proof of formation of superoxide ion. J Am Chem Soc. 1978;100(1):312–3.

    CAS  Google Scholar 

  36. Chin KK, Trevithick-Sutton CC, McCallum J, Jockusch S, Turro NJ, Scaiano JC, Foote CS, Garcia-Garibay MA. Quantitative determination of singlet oxygen generated by excited state aromatic amino acids, proteins, and immunoglobulins. J Am Chem Soc. 2008;130(22):6912−+.

  37. Siegert S, Vogeler F, Schiedt J, Weinkauf R. Direct spectroscopy of contact charge transfer states: possible consequences for tryptophan excited-state deactivation pathways by O2 and formation of reactive oxygen species. Phys Chem Chem Phys. 2010;12(19):4996–5006.

    CAS  PubMed  Google Scholar 

  38. Wentworth P Jr, Jones LH, Wentworth AD, Zhu X, Larsen NA, Wilson IA, et al. Antibody catalysis of the oxidation of water. Science. 2001;293(5536):1806–11.

    CAS  PubMed  Google Scholar 

  39. Zhu X, Wentworth P Jr, Wentworth AD, Eschenmoser A, Lerner RA, Wilson IA. Probing the antibody-catalyzed water-oxidation pathway at atomic resolution. Proc Natl Acad Sci U S A. 2004;101(8):2247–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nieva J, Wentworth P Jr. The antibody-catalyzed water oxidation pathway--a new chemical arm to immune defense? Trends Biochem Sci. 2004;29(5):274–8.

    CAS  PubMed  Google Scholar 

  41. Wentworth P Jr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, Jones T, et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002;298(5601):2195–9.

    CAS  PubMed  Google Scholar 

  42. Dikalov S, Khramtsov V, Zimmer G. Determination of rate constants of the reactions of thiols with superoxide radical by electron paramagnetic resonance: critical remarks on spectrophotometric approaches. Arch Biochem Biophys. 1996;326(2):207–18.

    CAS  PubMed  Google Scholar 

  43. Jones CM, Lawrence A, Wardman P, Burkitt MJ. Electron paramagnetic resonance spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: re-evaluation of the rate constant. Free Radic Biol Med. 2002;32(10):982–90.

    CAS  PubMed  Google Scholar 

  44. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703(2):93–109.

    CAS  PubMed  Google Scholar 

  45. Fang XW, Jin FM, Jin HF, von Sonntag C. Reaction of the superoxide radical with the N-centered radical derived from N-acetyltryptophan methyl ester. J Chem Soc Perk T 2. 1998(2):259–263.

  46. Carroll L, Pattison DI, Davies JB, Anderson RF, Lopez-Alarcon C, Davies MJ. Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products. Free Radical Bio Med. 2018;118:126–36.

    CAS  Google Scholar 

  47. Ronsein GE, de Oliveira MC, de Medeiros MH, Di Mascio P. Characterization of O(2) ((1)delta(g))-derived oxidation products of tryptophan: a combination of tandem mass spectrometry analyses and isotopic labeling studies. J Am Soc Mass Spectrom. 2009;20(2):188–97.

    CAS  PubMed  Google Scholar 

  48. Ronsein GE, Oliveira MC, Miyamoto S, Medeiros MH, Di Mascio P. Tryptophan oxidation by singlet molecular oxygen [O2(1Deltag)]: mechanistic studies using 18O-labeled hydroperoxides, mass spectrometry, and light emission measurements. Chem Res Toxicol. 2008;21(6):1271–83.

    CAS  PubMed  Google Scholar 

  49. Dremina ES, Sharov VS, Davies MJ, Schöneich C. Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides. Chem Res Toxicol. 2007;20(10):1462–9.

    CAS  PubMed  Google Scholar 

  50. Stevenson KL, Papadantonakis GA, LeBreton PR. Nanosecond UV laser photoionization of aqueous tryptophan: temperature dependence of quantum yield, mechanism, and kinetics of hydrated electron decay. J Photoch Photobio A. 2000;133(3):159–67.

    CAS  Google Scholar 

  51. Sherin PS, Snytnikova OA, Tsentalovich YP. Tryptophan photoionization from prefluorescent and fluorescent states. Chem Phys Lett. 2004;391(1–3):44–9.

    CAS  Google Scholar 

  52. Truong TB. Charge-Transfer to a Solvent State .5. Effect of Solute-Solvent Interaction on the Ionization-Potential of the Solute - Mechanism for Photo-Ionization. J Phys Chem-Us 1980;84(9):964–970.

  53. Neves-Petersen MT, Gryczynski Z, Lakowicz J, Fojan P, Pedersen S, Petersen E, et al. High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Sci. 2002;11(3):588–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinho JM, Santos AM, Fedorov A, Baptista RP, Taipa MA, Cabral JM. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics. Photochem Photobiol. 2003;78(1):15–22.

    CAS  PubMed  Google Scholar 

  55. Li Z, Bruce A, Galley WC. Temperature dependence of the disulfide perturbation to the triplet state of tryptophan. Biophys J. 1992;61(5):1364–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bent DV, Hayon E. Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. J Am Chem Soc. 1975;97(10):2612–9.

    CAS  PubMed  Google Scholar 

  57. Miller BL, Hageman MJ, Thamann TJ, Barron LB, Schöneich C. Solid-state photodegradation of bovine somatotropin (bovine growth hormone): evidence for tryptophan-mediated photooxidation of disulfide bonds. J Pharm Sci. 2003;92(8):1698–709.

    CAS  PubMed  Google Scholar 

  58. Steinmann D, Mozziconacci O, Bommana R, Stobaugh JF, Wang YJ, Schöneich C. Photodegradation pathways of protein disulfides: human growth hormone. Pharm Res. 2017;34(12):2756–78.

    CAS  PubMed  Google Scholar 

  59. Wecksler AT, Yin J, Lee Tao P, Kabakoff B, Sreedhara A, Deperalta G. Photodisruption of the structurally conserved Cys-Cys-Trp triads leads to reduction-resistant scrambled Intrachain disulfides in an IgG1 monoclonal antibody. Mol Pharm. 2018;15(4):1598–606.

    CAS  PubMed  Google Scholar 

  60. Vanhooren A, Devreese B, Vanhee K, Van Beeumen J, Hanssens I. Photoexcitation of tryptophan groups induces reduction of two disulfide bonds in goat alpha-lactalbumin. Biochemistry. 2002;41(36):11035–43.

    CAS  PubMed  Google Scholar 

  61. Haywood J, Mozziconacci O, Allegre KM, Kerwin BA, Schöneich C. Light-induced conversion of Trp to Gly and Gly hydroperoxide in IgG1. Mol Pharm. 2013;10(3):1146–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Truong TB. Charge-transfer to a solvent state - luminescence studies of tryptophan in aqueous 4.5 M Cacl2 solutions at 300-K and 77-K. J Phys Chem-Us. 1980;84(9):960–4.

    CAS  Google Scholar 

  63. Truong TB. Charge-Transfer to a Solvent .2. Luminescence Studies of Tryptophan in Aqueous Solvent at 300-K and 77-K. J Chem Phys 1979;70(7):3536–3543.

  64. Finnstrom B, Tfibel F, Lindqvist L. One-photon and 2-photon ionization of aqueous tryptophan by the harmonics of the Nd-laser. Chem Phys Lett. 1980;71(2):312–6.

    Google Scholar 

  65. Juszczak LJ, Eisenberg AS. The color of Cation-pi interactions: subtleties of amine-tryptophan interaction energetics allow for radical-like visible absorbance and fluorescence. J Am Chem Soc. 2017;139(24):8302–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dougherty DA. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996;271(5246):163–8.

    CAS  PubMed  Google Scholar 

  67. Gallivan JP, Dougherty DA. Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A. 1999;96(17):9459–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dougherty DA. The cation-pi interaction. Acc Chem Res. 2013;46(4):885–93.

    CAS  PubMed  Google Scholar 

  69. Truong TB, Petit A. Charge-Transfer to Solvent State .4. Luminescence of Phenol and Tyrosine in Different Aqueous Solvents at 300 and 77-K. J Phys Chem-Us 1979;83(10):1300–1305.

  70. Alata I, Bert J, Broquier M, Dedonder C, Feraud G, Gregoire G, et al. Electronic spectra of the protonated indole chromophore in the gas phase. J Phys Chem A. 2013;117(21):4420–7.

    CAS  PubMed  Google Scholar 

  71. Dyer JM, Bringans SD, Bryson WG. Characterisation of photo-oxidation products within photoyellowed wool proteins: tryptophan and tyrosine derived chromophores. Photochem Photobiol Sci. 2006;5(7):698–706.

    CAS  PubMed  Google Scholar 

  72. Catalfo A, Bracchitta G, De Guidi G. Role of aromatic amino acid tryptophan UVA-photoproducts in the determination of drug photosensitization mechanism: a comparison between methylene blue and naproxen. Photochem Photobiol Sci. 2009;8(10):1467–75.

    CAS  PubMed  Google Scholar 

  73. Walrant P, Santus R. N-formyl-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer. Photochem Photobiol. 1974;19(6):411–7.

    CAS  PubMed  Google Scholar 

  74. Dreaden TM, Chen J, Rexroth S, Barry BA. N-formylkynurenine as a marker of high light stress in photosynthesis. J Biol Chem. 2011;286(25):22632–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Parker NR, Jamie JF, Davies MJ, Truscott RJ. Protein-bound kynurenine is a photosensitizer of oxidative damage. Free Radic Biol Med. 2004;37(9):1479–89.

    CAS  PubMed  Google Scholar 

  76. Mizdrak J, Hains PG, Truscott RJ, Jamie JF, Davies MJ. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radic Biol Med. 2008;44(6):1108–19.

    CAS  PubMed  Google Scholar 

  77. Kessel L, Nielsen IB, Bochenkova AV, Bravaya KB, Andersen LH. Gas-phase spectroscopy of protonated 3-OH kynurenine and argpyrimidine. Comparison of experimental results to theoretical modeling. J Phys Chem A. 2007;111(42):10537–43.

    CAS  PubMed  Google Scholar 

  78. Michael AF, Drummond KN, Doeden D, Anderson JA, Good RA. Tryptophan metabolism in man. J Clin Invest. 1964;43:1730–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Okuda S, Nishiyama N, Saito H, Katsuki H. Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci U S A. 1996;93(22):12553–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang J, Wang S, Liu J, Raghani A. Determination of tryptophan oxidation of monoclonal antibody by reversed phase high performance liquid chromatography. J Chromatogr A. 2007;1156(1–2):174–82.

    CAS  PubMed  Google Scholar 

  81. Lam XM, Lai WG, Chan EK, Ling V, Hsu CC. Site-specific tryptophan oxidation induced by autocatalytic reaction of polysorbate 20 in protein formulation. Pharm Res. 2011;28(10):2543–55.

    CAS  PubMed  Google Scholar 

  82. Li Y, Polozova A, Gruia F, Feng J. Characterization of the degradation products of a color-changed monoclonal antibody: tryptophan-derived chromophores. Anal Chem. 2014;86(14):6850–7.

    CAS  PubMed  Google Scholar 

  83. Pirie A. Formation of N'-formylkynurenine in proteins from lens and other sources by exposure to sunlight. Biochem J. 1971;125(1):203–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dilley KJ. Loss of tryptophan associated with photo-polymerization and yellowing of proteins exposed to light over 300nm. Biochem J. 1973;133(4):821–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Qi P, Volkin DB, Zhao H, Nedved ML, Hughes R, Bass R, et al. Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci. 2009;98(9):3117–30.

    CAS  PubMed  Google Scholar 

  86. Itakura K, Uchida K, Kawakishi S. Selective formation of oxindole- and formylkynurenine-type products from tryptophan and its peptides treated with a superoxide-generating system in the presence of iron(III)-EDTA: a possible involvement with iron-oxygen complex. Chem Res Toxicol. 1994;7(2):185–90.

    CAS  PubMed  Google Scholar 

  87. Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J. Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem. 2011;286(28):25134–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Steinmann D, Ji JA, Wang YJ, Schöneich C. Oxidation of human growth hormone by oxygen-centered radicals: formation of Leu-101 hydroperoxide and Tyr-103 oxidation products. Mol Pharm. 2012;9(4):803–14.

    CAS  PubMed  Google Scholar 

  89. Leinisch F, Mariotti M, Hagglund P, Davies MJ. Structural and functional changes in RNAse a originating from tyrosine and histidine cross-linking and oxidation induced by singlet oxygen and peroxyl radicals. Free Radic Biol Med. 2018;126:73–86.

    CAS  PubMed  Google Scholar 

  90. Harmon PA, Kosuda K, Nelson E, Mowery M, Reed RA. A novel peroxy radical based oxidative stressing system for ranking the oxidizability of drug substances. J Pharm Sci. 2006;95(9):2014–28.

    CAS  PubMed  Google Scholar 

  91. Reid LO, Vignoni M, Martins-Froment N, Thomas AH, Dantola ML. Photochemistry of tyrosine dimer: when an oxidative lesion of proteins is able to photoinduce further damage. Photochem Photobiol Sci. 2019;18(7):1732–41.

    CAS  PubMed  Google Scholar 

  92. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, et al. Role of buffers in protein formulations. J Pharm Sci. 2017;106(3):713–33.

    CAS  PubMed  Google Scholar 

  93. Mason BD, McCracken M, Bures EJ, Kerwin BA. Oxidation of free L-histidine by tert-Butylhydroperoxide. Pharm Res. 2010;27(3):447–56.

    CAS  PubMed  Google Scholar 

  94. Farber JM, Levine RL. Sequence of a peptide susceptible to mixed-function oxidation. Probable cation binding site in glutamine synthetase. J Biol Chem. 1986;261(10):4574–8.

    CAS  PubMed  Google Scholar 

  95. Levine RL. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue. J Biol Chem. 1983;258(19):11823–7.

    CAS  PubMed  Google Scholar 

  96. Levine RL. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system. J Biol Chem. 1983;258(19):11828–33.

    CAS  PubMed  Google Scholar 

  97. Levine RL. Mixed-function oxidation of histidine residues. Methods Enzymol. 1984;107:370–6.

    CAS  PubMed  Google Scholar 

  98. Stroop SD, Conca DM, Lundgard RP, Renz ME, Peabody LM, Leigh SD. Photosensitizers form in histidine buffer and mediate the photodegradation of a monoclonal antibody. J Pharm Sci. 2011;100(12):5142–55.

    CAS  PubMed  Google Scholar 

  99. Agon VV, Bubb WA, Wright A, Hawkins CL, Davies MJ. Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides. Free Radic Biol Med. 2006;40(4):698–710.

    CAS  PubMed  Google Scholar 

  100. Sebekova K, Brouder SK. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90.

    CAS  PubMed  Google Scholar 

  101. D'Aronco S, Crotti S, Agostini M, Traldi P, Chilelli NC, Lapolla A. The role of mass spectrometry in studies of glycation processes and diabetes management. Mass Spectrom Rev. 2019;38(1):112–46.

    CAS  PubMed  Google Scholar 

  102. Chetyrkin SV, Mathis ME, Ham AJ, Hachey DL, Hudson BG, Voziyan PA. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine. Free Radic Biol Med. 2008;44(7):1276–85.

    CAS  PubMed  Google Scholar 

  103. Hemmler D, Gonsior M, Powers LC, Marshall JW, Rychlik M, Taylor AJ, et al. Simulated sunlight selectively modifies Maillard reaction products in a wide Array of chemical reactions. Chemistry. 2019;25(57):13208–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Schuchmann MN, Sonntag CV. Radiation-Chemistry of Carbohydrates .14. Hydroxyl Radical Induced Oxidation of D-Glucose in Oxygenated Aqueous-Solution. J Chem Soc Perk T 2. 1977(14):1958–1963.

  105. Wondrak GT, Jacobson EL, Jacobson MK. Photosensitization of DNA damage by glycated proteins. Photochem Photobiol Sci. 2002;1(5):355–63.

    CAS  PubMed  Google Scholar 

  106. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–46.

    CAS  PubMed  Google Scholar 

  107. Kaur H, Kamalov M, Brimble MA. Chemical synthesis of peptides containing site-specific advanced Glycation Endproducts. Acc Chem Res. 2016;49(10):2199–208.

    CAS  PubMed  Google Scholar 

  108. Ortwerth BJ, Prabhakaram M, Nagaraj RH, Linetsky M. The relative UV sensitizer activity of purified advanced glycation endproducts. Photochem Photobiol. 1997;65(4):666–72.

    CAS  PubMed  Google Scholar 

  109. Masaki H, Okano Y, Sakurai H. Generation of active oxygen species from advanced glycation end-products (AGEs) during ultraviolet light a (UVA) irradiation and a possible mechanism for cell damaging. Biochim Biophys Acta. 1999;1428(1):45–56.

    CAS  PubMed  Google Scholar 

  110. Li S, Patapoff TW, Overcashier D, Hsu C, Nguyen TH, Borchardt RT. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state. J Pharm Sci. 1996;85(8):873–7.

    CAS  PubMed  Google Scholar 

  111. Brady LJ, Martinez T, Balland A. Characterization of nonenzymatic glycation on a monoclonal antibody. Anal Chem. 2007;79(24):9403–13.

    CAS  PubMed  Google Scholar 

  112. Jacobitz AW, Dykstra AB, Spahr C, Agrawal NJ. Effects of buffer composition on site-specific Glycation of lysine residues in monoclonal antibodies. J Pharm Sci. 2019.

  113. Gadgil HS, Bondarenko PV, Pipes G, Rehder D, McAuley A, Perico N, et al. The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. J Pharm Sci. 2007;96(10):2607–21.

    CAS  PubMed  Google Scholar 

  114. Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D. Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem. 2007;79(15):5991–9.

    CAS  PubMed  Google Scholar 

  115. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    PubMed  Google Scholar 

  116. Smales CM, Pepper DS, James DC. Protein modifications during antiviral heat bioprocessing and subsequent storage. Biotechnol Prog. 2001;17(5):974–8.

    CAS  PubMed  Google Scholar 

  117. Smales CM, Pepper DS, James DC. Evaluation of protein modification during anti-viral heat bioprocessing by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(5):351–6.

    CAS  PubMed  Google Scholar 

  118. Banks DD, Hambly DM, Scavezze JL, Siska CC, Stackhouse NL, Gadgil HS. The effect of sucrose hydrolysis on the stability of protein therapeutics during accelerated formulation studies. J Pharm Sci. 2009;98(12):4501–10.

    CAS  PubMed  Google Scholar 

  119. Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact. Biotechnol J. 2018;13(1).

  120. Fischer S, Hoernschemeyer J, Mahler HC. Glycation during storage and administration of monoclonal antibody formulations. Eur J Pharm Biopharm. 2008;70(1):42–50.

    CAS  PubMed  Google Scholar 

  121. Miller AK, Hambly DM, Kerwin BA, Treuheit MJ, Gadgil HS. Characterization of site-specific glycation during process development of a human therapeutic monoclonal antibody. J Pharm Sci. 2011;100(7):2543–50.

    CAS  PubMed  Google Scholar 

  122. Butko M, Pallat H, Cordoba A, Yu XC. Recombinant antibody color resulting from advanced glycation end product modifications. Anal Chem. 2014;86(19):9816–23.

    CAS  PubMed  Google Scholar 

  123. Mo J, Jin R, Yan Q, Sokolowska I, Lewis MJ, Hu P. Quantitative analysis of glycation and its impact on antigen binding. MAbs. 2018;10(3):406–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang B, Yang Y, Yuk I, Pai R, McKay P, Eigenbrot C, et al. Unveiling a glycation hot spot in a recombinant humanized monoclonal antibody. Anal Chem. 2008;80(7):2379–90.

    CAS  PubMed  Google Scholar 

  125. Quan C, Alcala E, Petkovska I, Matthews D, Canova-Davis E, Taticek R, et al. A study in glycation of a therapeutic recombinant humanized monoclonal antibody: where it is, how it got there, and how it affects charge-based behavior. Anal Biochem. 2008;373(2):179–91.

    CAS  PubMed  Google Scholar 

  126. Ponniah G, Nowak C, Neill A, Liu H. Characterization of charge variants of a monoclonal antibody using weak anion exchange chromatography at subunit levels. Anal Biochem. 2017;520:49–57.

    CAS  PubMed  Google Scholar 

  127. Dong Q, Liang Y, Yan X, Markey SP, Mirokhin YA, Tchekhovskoi DV, et al. The NISTmAb tryptic peptide spectral library for monoclonal antibody characterization. MAbs. 2018;10(3):354–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dwivedi M, Blech M, Presser I, Garidel P. Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes. Int J Pharm. 2018;552(1–2):422–36.

    CAS  PubMed  Google Scholar 

  129. Labrenz SR. Ester hydrolysis of polysorbate 80 in mAb drug product: evidence in support of the hypothesized risk after the observation of visible particulate in mAb formulations. J Pharm Sci. 2014;103(8):2268–77.

    CAS  PubMed  Google Scholar 

  130. Kranz W, Wuchner K, Corradini E, Berger M, Hawe A. Factors influencing Polysorbate's sensitivity against enzymatic hydrolysis and oxidative degradation. J Pharm Sci. 2019;108(6):2022–32.

    CAS  PubMed  Google Scholar 

  131. Dixit N, Salamat-Miller N, Salinas PA, Taylor KD, Basu SK. Residual host cell protein promotes Polysorbate 20 degradation in a Sulfatase drug product leading to free fatty acid particles. J Pharm Sci. 2016;105(5):1657–66.

    CAS  PubMed  Google Scholar 

  132. Hall T, Sandefur SL, Frye CC, Tuley TL, Huang LH. Polysorbates 20 and 80 degradation by group XV Lysosomal phospholipase a(2) isomer X1 in monoclonal antibody formulations. J Pharm Sci-Us. 2016;105(5):1633–42.

    CAS  Google Scholar 

  133. Bates TR, Nightingale CH, Dixon E. Kinetics of hydrolysis of polyoxyethylene (20) sorbitan fatty acid ester surfactants. J Pharm Pharmacol. 1973;25(6):470–7.

    CAS  PubMed  Google Scholar 

  134. Zhang L, Yadav S, Demeule B, Wang YJ, Mozziconacci O, Schöneich C. Degradation mechanisms of Polysorbate 20 differentiated by O-18-labeling and mass spectrometry. Pharm Res-Dordr. 2017;34(1):84–100.

    CAS  Google Scholar 

  135. Tamura H, Shibamoto T. Gas chromatographic analysis of malonaldehyde and 4-hydroxy-2-(E)-nonenal produced from arachidonic acid and linoleic acid in a lipid peroxidation model system. Lipids. 1991;26(2):170–3.

    CAS  PubMed  Google Scholar 

  136. Lamore SD, Azimian S, Horn D, Anglin BL, Uchida K, Cabello CM, et al. The malondialdehyde-derived fluorophore DHP-lysine is a potent sensitizer of UVA-induced photooxidative stress in human skin cells. J Photochem Photobiol B. 2010;101(3):251–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Schnellbaecher A, Binder D, Bellmaine S, Zimmer A. Vitamins in cell culture media: stability and stabilization strategies. Biotechnol Bioeng. 2019;116(6):1537–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Prentice KM, Gillespie R, Lewis N, Fujimori K, McCoy R, Bach J, et al. Hydroxocobalamin association during cell culture results in pink therapeutic proteins. MAbs. 2013;5(6):974–81.

    PubMed  PubMed Central  Google Scholar 

  139. Derfus GE, Dizon-Maspat J, Broddrick JT, Velayo AC, Toschi JD, Santuray RT, et al. Red colored IgG4 caused by vitamin B12 from cell culture media combined with disulfide reduction at harvest. MAbs. 2014;6(3):679–88.

    PubMed  PubMed Central  Google Scholar 

  140. Karran P, Brem R. Protein oxidation, UVA and human DNA repair. DNA Repair (Amst). 2016;44:178–85.

    CAS  Google Scholar 

  141. Cardoso DR, Franco DW, Olsen K, Andersen ML, Skibsted LH. Reactivity of bovine whey proteins, peptides, and amino acids toward triplet riboflavin as studied by laser flash photolysis. J Agric Food Chem. 2004;52(21):6602–6.

    CAS  PubMed  Google Scholar 

  142. Huvaere K, Skibsted LH. Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins. J Am Chem Soc. 2009;131(23):8049–60.

    CAS  PubMed  Google Scholar 

  143. Castano C, Dantola ML, Oliveros E, Thomas AH, Lorente C. Oxidation of tyrosine photoinduced by pterin in aqueous solution. Photochem Photobiol. 2013;89(6):1448–55.

    CAS  PubMed  Google Scholar 

  144. Thomas AH, Lorente C, Roitman K, Morales MM, Dantola ML. Photosensitization of bovine serum albumin by pterin: a mechanistic study. J Photochem Photobiol B. 2013;120:52–8.

    CAS  PubMed  Google Scholar 

  145. Reid LO, Dantola ML, Petroselli G, Erra-Balsells R, Miranda MA, Lhiaubet-Vallet V, et al. Chemical modifications of globular proteins Phototriggered by an endogenous photosensitizer. Chem Res Toxicol. 2019;32(11):2250–9.

    CAS  PubMed  Google Scholar 

  146. Dantola ML, Zurbano BN, Thomas AH. Photoinactivation of tyrosinase sensitized by folic acid photoproducts. J Photochem Photobiol B. 2015;149:172–9.

    Google Scholar 

  147. Dantola ML, Urrutia MN, Thomas AH. Effect of pterin impurities on the fluorescence and photochemistry of commercial folic acid. J Photochem Photobiol B. 2018;181:157–63.

    CAS  PubMed  Google Scholar 

  148. Scurachio RS, Skibsted LH, Metzker G, Cardoso DR. Photodegradation of folate sensitized by riboflavin. Photochem Photobiol. 2011;87(4):840–5.

    CAS  PubMed  Google Scholar 

  149. Schöneich C. Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J Pharm Biomed Anal. 2000;21(6):1093–7.

    PubMed  Google Scholar 

  150. Zhao F, Ghezzo-Schöneich E, Aced GI, Hong J, Milby T, Schöneich C. Metal-catalyzed oxidation of histidine in human growth hormone. Mechanism, isotope effects, and inhibition by a mild denaturing alcohol. J Biol Chem. 1997;272(14):9019–29.

    CAS  PubMed  Google Scholar 

  151. Shen HR, Spikes JD, Kopecekova P, Kopecek J. Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers. J Photochem Photobiol B. 1996;34(2–3):203–10.

    CAS  PubMed  Google Scholar 

  152. Shen HR, Spikes JD, Kopeckova P, Kopecek J. Photodynamic crosslinking of proteins. II. Photocrosslinking of a model protein-ribonuclease a. J Photochem Photobiol B. 1996;35(3):213–9.

    CAS  PubMed  Google Scholar 

  153. Shen HR, Spikes JD, Smith CJ, Kopecek J. Photodynamic cross-linking of proteins - IV. Nature of the his-his bond(s) formed in the rose bengal-photosensitized cross-linking of N-benzoyl-L-histidine. J Photoch Photobio A. 2000;130(1):1–6.

    Google Scholar 

  154. Liu Y, Sun G, David A, Sayre LM. Model studies on the metal-catalyzed protein oxidation: structure of a possible his-Lys cross-link. Chem Res Toxicol. 2004;17(1):110–8.

    CAS  PubMed  Google Scholar 

  155. Schöneich C. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation. J Pharm Pharmacol. 2018;70(5):655–65.

    PubMed  Google Scholar 

  156. Kang H, Larson NR, White DR, Middaugh CR, Tolbert T, Schöneich C. Effects of glycan structure on the stability and receptor binding of an IgG4-fc. J Pharm Sci. 2019.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The author wishes to thank all graduate students, post-docs, and collaborators, who have contributed to our research in the field of protein photo-degradation. This research was funded, in part, by Genentech, the Genentech Foundation, and Amgen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schöneich.

Additional information

Guest Editors: Ahmed Besheer and Hanns-Christian Mahler

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöneich, C. Photo-Degradation of Therapeutic Proteins: Mechanistic Aspects. Pharm Res 37, 45 (2020). https://doi.org/10.1007/s11095-020-2763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-2763-8

Keywords

Navigation