Skip to main content

Advertisement

Log in

Preparation of Ondansetron Hydrochloride-Loaded Nanostructured Lipid Carriers Using Solvent Injection Method for Enhancement of Pharmacokinetic Properties

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to incorporate ondansetron hydrochloride (ODS), a water-soluble drug into nanostructured lipid carriers (NLCs) to improve the pharmacokinetic properties of the drug.

Methods

NLCs were produced by solvent injection method. Various parameters of formulation and process were assessed to enhance the drug incorporation into NLCs. Physicochemical analyses, in vitro drug release, and pharmacokinetic studies were performed.

Results

Entrapment efficiency (EE) of ODS was considerably improved (>90%) by increasing pH of the aqueous phase. The use of an appropriate level of liquid lipid resulted in small, monodispersed NLCs with the enhanced EE and drug loading (DL). The optimized NLCs formulation exhibited particle size of 185.2 ± 1.9 nm, polydispersity index of 0.214 ± 0.006, EE of 93.2 ± 0.5%, and DL of 10.43 ± 0.05% as well as an in vitro sustained-release profile of ODS. Differential scanning calorimetry and X-ray powder diffraction suggested the amorphous state of ODS in the NLCs. The pharmacokinetic study in rats exhibited the sustained-release characteristic of the optimized ODS-loaded NLCs following subcutaneous administration with an extended Tmax and mean residence time as well as the enhanced systemic exposure compared to the ODS solution.

Conclusions

The ODS-loaded NLCs appear potential for prolongation of drug action and reduction in dosing frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CINV:

Chemotherapy-induced nausea and vomiting

DL:

Drug loading

DSC:

Differential scanning calorimetry

EE:

Entrapment efficiency

FTIR:

Fourier transform-infrared spectroscopy

HPLC:

High performance liquid chromatography

IS:

Internal standard

LC-MS/MS:

Liquid chromatography – tandem mass spectroscopy

MRM:

Multiple reaction monitoring

MRT:

Mean residence time

MWCO:

Molecular weight cut-off

NLCs:

Nanostructured lipid carriers

ODS:

Ondansetron hydrochloride

SLNs:

Solid lipid nanoparticles

TEM:

Transmission electron microscopy

XRD:

X-ray powder diffraction

References

  1. de Sousa Marcial SP, Carneiro G, Leite EA. Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment. J Nanopart Res. 2017;19(10):340.

    Article  CAS  Google Scholar 

  2. Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.

    Article  CAS  PubMed  Google Scholar 

  3. Tran TH, Choi JY, Ramasamy T, Truong DH, Nguyen CN, Choi H-G, et al. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym. 2014;114:407–15.

    Article  CAS  PubMed  Google Scholar 

  4. Ramasamy T, Khandasami US, Ruttala H, Shanmugam S. Development of solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal agent. Macromol Res. 2012;20(7):682–92.

    Article  CAS  Google Scholar 

  5. Tran TH, Ramasamy T, Truong DH, Choi H-G, Yong CS, Kim JO. Preparation and characterization of Fenofibrate-loaded nanostructured lipid carriers for Oral bioavailability enhancement. AAPS PharmSciTech. 2014;15(6):1509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gupta B, Ramasamy T, Poudel BK, Pathak S, Regmi S, Choi JY, et al. Development of bioactive PEGylated nanostructured platforms for sequential delivery of doxorubicin and Imatinib to overcome drug resistance in metastatic tumors. ACS Appl Mater Interfaces. 2017;9(11):9280–90.

    Article  CAS  PubMed  Google Scholar 

  7. Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi H-G, Yong CS, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release. 2017;258:226–53.

    Article  CAS  PubMed  Google Scholar 

  8. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1):121–8.

    Article  PubMed  Google Scholar 

  9. Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials. 2017;7(6):122.

    Article  PubMed Central  CAS  Google Scholar 

  10. Devkar TB, Tekade AR, Khandelwal KR. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer. Colloids Surf B: Biointerfaces. 2014;122(Supplement C:143–50.

    Article  CAS  PubMed  Google Scholar 

  11. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target. 2012;20(10):813–30.

    Article  CAS  PubMed  Google Scholar 

  12. Schubert MA, Müller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  13. Jain S, Jain S, Khare P, Gulbake A, Bansal D, Jain SK. Design and development of solid lipid nanoparticles for topical delivery of an anti-fungal agent. Drug Deliv. 2010;17(6):443–51.

    Article  CAS  PubMed  Google Scholar 

  14. Arıca Yegin B, Benoît J-P, Lamprecht A. Paclitaxel-loaded lipid nanoparticles prepared by solvent injection or ultrasound emulsification. Drug Dev Ind Pharm. 2006;32(9):1089–94.

    Article  PubMed  CAS  Google Scholar 

  15. Pandita D, Ahuja A, Velpandian T, Lather V, Dutta T, Khar R. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique. Pharmazie. 2009;64(5):301–10.

    CAS  PubMed  Google Scholar 

  16. Wang T, Wang N, Zhang Y, Shen W, Gao X, Li T. Solvent injection-lyophilization of tert-butyl alcohol/water cosolvent systems for the preparation of drug-loaded solid lipid nanoparticles. Colloids Surf B: Biointerfaces. 2010;79(1):254–61.

    Article  CAS  PubMed  Google Scholar 

  17. Christofaki M, Papaioannou A. Ondansetron: a review of pharmacokinetics and clinical experience in postoperative nausea and vomiting. Expert Opin Drug Metab Toxicol. 2014;10(3):437–44.

    Article  CAS  PubMed  Google Scholar 

  18. Ye JH, Ponnudurai R, Schaefer R. Ondansetron: a selective 5-HT3 receptor antagonist and its applications in CNS-related disorders. CNS Drug Rev. 2001;7(2):199–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Figg WD, Dukes GE, Pritchard JF, Hermann DJ, Lesesne HR, Carson SW, et al. Pharmacokinetics of ondansetron in patients with hepatic insufficiency. J Clin Pharmacol. 1996;36(3):206–15.

    Article  CAS  PubMed  Google Scholar 

  20. Roila F, Del Favero A. Ondansetron clinical pharmacokinetics. Clin Pharmacokinet. 1995;29(2):95–109.

    Article  CAS  PubMed  Google Scholar 

  21. Cho E, Gwak H, Chun I. Formulation and evaluation of ondansetron nasal delivery systems. Int J Pharm. 2008;349(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mahajan HS, Gattani SG. Nasal administration of ondansetron using a novel microspheres delivery system part II: ex vivo and in vivo studies. Pharm Dev Technol. 2010;15(6):653–7.

    Article  CAS  PubMed  Google Scholar 

  23. Cho J-R, Van Duong A, Nguyen LTT, Chi S-C. Design of transdermal matrix patch containing ondansetron. J Pharm Investig. 2016;46(7):677–84.

    Article  CAS  Google Scholar 

  24. Joshi AS, Patel HS, Belgamwar VS, Agrawal A, Tekade AR. Solid lipid nanoparticles of ondansetron HCl for intranasal delivery: development, optimization and evaluation. J Mater Sci Mater Med. 2012;23(9):2163–75.

    Article  CAS  PubMed  Google Scholar 

  25. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–77.

    Article  CAS  PubMed  Google Scholar 

  26. Becker Peres L, Becker Peres L, de Araújo PHH, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B: Biointerfaces. 2016;140:317–23.

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi T, Connors K. Phase-solubility techniques. In: Reilly C, editor. Advances in analytical chemistry and instrumentation, vol. 4. NewYork: Wiley-Interscience; 1965. p. 117–212.

    Google Scholar 

  28. Liu D, Jiang S, Shen H, Qin S, Liu J, Zhang Q, et al. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J Nanopart Res. 2011;13(6):2375–86.

    Article  CAS  Google Scholar 

  29. Liu K, Dai X, Zhong D, Chen X. Quantitative determination of ondansetron in human plasma by enantioselective liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2008;864(1):129–36.

    Article  CAS  Google Scholar 

  30. Zhu Y, Zhang Q, Zou J, Wan M, Zhao Z, Zhu J. Pharmacokinetics and bioavailability study of two ondansetron oral soluble film formulations in fasting healthy male Chinese volunteers. Drug Des Dev Ther. 2015;9:4621.

    CAS  Google Scholar 

  31. Garcia-Fuentes M, Torres D, Alonso MJ. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B: Biointerfaces. 2003;27(2):159–68.

    Article  CAS  Google Scholar 

  32. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev. 2007;59(6):478–90.

    Article  CAS  PubMed  Google Scholar 

  33. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release. 1997;43(2):197–212.

    Article  Google Scholar 

  34. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85.

    Article  CAS  PubMed  Google Scholar 

  35. Hu FQ, Hong Y, Yuan H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm. 2004;273(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  36. Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311–22.

    Article  CAS  PubMed  Google Scholar 

  37. Jain AK, Jain A, Garg NK, Agarwal A, Jain A, Jain SA, et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf B: Biointerfaces. 2014;121:222–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. 2011;415(1):232–43.

    Article  CAS  PubMed  Google Scholar 

  39. Kalam MA, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target. 2010;18(3):191–204.

    Article  CAS  PubMed  Google Scholar 

  40. Park J-M, Park S-J. Preparation and characterization of water-soluble microcapsule for sustained drug release using Eudragit RS 100. Macromol Res. 2010;18(12):1191–4.

    Article  CAS  Google Scholar 

  41. de Oliveira JL, Campos EVR, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF. Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem. 2015;63(2):422–32.

    Article  PubMed  CAS  Google Scholar 

  42. Patro NM, Devi K, Pai RS, Suresh S. Evaluation of bioavailability, efficacy, and safety profile of doxorubicin-loaded solid lipid nanoparticles. J Nanopart Res. 2013;15(12):2124.

    Article  CAS  Google Scholar 

  43. Jia L, Zhang D, Li Z, Duan C, Wang Y, Feng F, et al. Nanostructured lipid carriers for parenteral delivery of silybin: biodistribution and pharmacokinetic studies. Colloids Surf B: Biointerfaces. 2010;80(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  44. Han C, Qi CM, Zhao BK, Cao J, Xie SY, Wang SL, et al. Hydrogenated castor oil nanoparticles as carriers for the subcutaneous administration of tilmicosin: in vitro and in vivo studies. J Vet Pharmacol Ther. 2009;32(2):116–23.

    Article  CAS  PubMed  Google Scholar 

  45. Chen S, Tam YYC, Lin PJC, Leung AKK, Tam YK, Cullis PR. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. J Control Release. 2014;196:106–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and disclosures

All authors declare that they have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Cheol Chi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, VA., Nguyen, TTL., Maeng, HJ. et al. Preparation of Ondansetron Hydrochloride-Loaded Nanostructured Lipid Carriers Using Solvent Injection Method for Enhancement of Pharmacokinetic Properties. Pharm Res 36, 138 (2019). https://doi.org/10.1007/s11095-019-2672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2672-x

Key words

Navigation