Skip to main content
Log in

A Single Hydrogen to Fluorine Substitution Reverses the Trend of Surface Composition Enrichment of Sorafenib Amorphous Solid Dispersion upon Moisture Exposure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To reveal the underlying mechanism inducing the opposite trends of surface composition enrichment of spray dried amorphous solid dispersions (ASD) of sorafenib and regorafenib, two compounds only differ in hydrogen to fluorine substitution.

Methods

Sorafenib/PVP and regorafenib/PVP ASDs were prepared by spray drying. Morphology of ASDs was visually inspected and examined by SEM. The surface compositions of ASDs were analyzed by XPS. Glass transition temperature (Tg) of ASDs was determined by DSC. Water vapor sorption isotherms of ASDs were studied by moisture sorption analyzer. Molecular interaction between the drug and the polymer was analyzed by solution NMR.

Results

In 10% and 20% drug loading sorafenib/PVP ASDs, short time moisture exposure induced PVP enrichment on the surface, and the appearance of initial ASDs powder became gel-like after water uptake. While in 30% sorafenib/PVP and any regorafenib/PVP ASDs regardless of drug loading, moisture exposure induced surface drug enrichment, while their powder-like appearance and average particle size remained unchanged. Meanwhile, sorafenib/PVP had similar water vapor sorption isotherms as regorafenib/PVP, before and after moisture induced phase separation. NMR study demonstrated a hex atomic ring H-bonding interaction between the drug and PVP, with a 1:1 drug: monomer stoichiometry molar ratio, which persisted in sorafenib/PVP but not regorafenib/PVP system under 95%RH moisture.

Conclusions

Moisture exposure could lead to drug or polymer enrichment on the surface of ASDs, while the viability of drug-polymer interaction persisting in water environment contributed to such surface composition enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2D-NOESY:

Two-dimensional nuclear Overhauser effect spectroscopy

ASD:

Amorphous solid dispersion

DSC:

Differential scanning calorimetry

M w :

Molecular weight

NMR:

Nuclear magnetic resonance

PM-ASD:

Physical mixture of ASD and pure polymer

PVP:

Poly(vinyl pyrrolidone)

PXRD:

Powder X-ray diffraction

SEM:

Scanning electron microscopy

T g :

Glass transition temperature

T m :

Melting point

XPS:

X-ray photoelectron spectroscopy

References

  1. Simonelli AP, Mehta SC, Higuch WI. Dissolution rates of high energy Polyvinylpyrrolidone (PVP)-sulfathiazole Coprecipitates. J Pharm Sci. 1969;58(5):538–49.

    Article  CAS  PubMed  Google Scholar 

  2. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.

    Article  CAS  PubMed  Google Scholar 

  3. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  4. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo W, Nightingale J. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  5. Nikghalb LA, Singh G, Singh G, Kahkeshan KF. Solid dispersion: methods and polymers to increase the solubility of poorly soluble drugs. J Appl Pharm Sci. 2014;2(10):170–5.

    Google Scholar 

  6. Ediger MD, Angell CA, Nagel SR. Supercooled liquids and glasses. J Phys Chem. 1996;100(31):13200–12.

    Article  CAS  Google Scholar 

  7. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou DL, Zhang GGZ, Law D, Grant DJW, Schmitt EA. Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci. 2002;91(8):1863–72.

    Article  CAS  PubMed  Google Scholar 

  9. Graeser KA, Patterson JEP, Zeitler JA, Gordon KC, Rades T. Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci. 2009;37(3–4):492–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rumondor ACF, Taylor LS. Effect of polymer Hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm. 2010;7(2):477–90.

    Article  CAS  PubMed  Google Scholar 

  11. Vasanthavada M, Tong WQ (Tony), Joshi Y, Kislalioglu MS. Phase behavior of amorphous molecular dispersions II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm. Res. 2005, 22, (3), 440–448.

  12. Crowley KJ, Zografi G. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions. J Pharm Sci. 2002;91:2150–65.

    Article  CAS  PubMed  Google Scholar 

  13. Chen H, Pui Y, Liu C, Chen Z, Su C, Hageman M, et al. Moisture-induced amorphous phase separation of amorphous solid dispersions: molecular mechanism, microstructure, and its impact on dissolution performance. J Pharm Sci. 2018;107(1):317–26.

    Article  CAS  PubMed  Google Scholar 

  14. Rumondor ACF, Wikström H, Eerdenbrugh BV, Taylor LS. Understanding the tendency of amorphous solid dispersions to undergo amorphous–amorphous phase separation in the presence of absorbed moisture. AAPS PharmSciTech. 2011;12(4):1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rumondor ACF, Taylor LS. Effect of polymer Hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;7:477–90.

    Article  CAS  Google Scholar 

  16. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14(12):1691–8.

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug–polymer–water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12(2):576–89.

    Article  CAS  PubMed  Google Scholar 

  18. Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS. Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;6(5):1492–505.

    Article  CAS  PubMed  Google Scholar 

  19. Punčochová K, Heng JYY, Beránek J, Štěpánek F. Investigation of drug–polymer interaction in solid dispersions by vapour sorption methods. Int J Pharm. 2014;469(1):159–67.

    Article  PubMed  CAS  Google Scholar 

  20. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395(1–2):232–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kim EHJ, Chen XD, Pearce D. Surface composition of industrial spray-dried milk powders. 1. Development of surface composition during manufacture. J Food Eng. 2009;94(2):163–8.

    Article  CAS  Google Scholar 

  22. Kim EHJ, Chen XD, Pearce D. Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J Food Eng. 2009;94(2):169–81.

    Article  CAS  Google Scholar 

  23. Gaiani C, Ehrhardt J, Scher J, Hardy J, Desobry S, Banon S. Surface composition of dairy powders observed by X-ray photoelectron spectroscopy and effects on their rehydration properties. Colloids Surf B: Biointerfaces. 2006;49(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Yang K, Huang C, Zhu A, Yu L, Qian F. Surface enrichment and depletion of the active Ingredientin spray dried amorphous solid dispersions. Pharm Res. 2018;35:38.

    Article  PubMed  CAS  Google Scholar 

  25. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Initial drug dissolution from amorphous solid dispersions controlled by polymer dissolution and drug-polymer interaction. Pharm Res. 2016;33(10):2445–58.

    Article  PubMed  CAS  Google Scholar 

  26. Miyazaki T, Yoshioka S, Aso Y, Kawanishi T. Crystallization rate of amorphous nifedipine analogues unrelated to the glass transition temperature. Int J Pharm. 2007;336(1):191–5.

    Article  CAS  PubMed  Google Scholar 

  27. Marsac PJ, Konno H, Taylor LS. A comparison of the physical stability of amorphous Felodipine and Nifedipine systems. Pharm Res. 2006;23(10):2306–16.

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Xu C, Yu J, Pui Y, Chen H, Wang S, Zhu A (Donghua), Li J, Qian F. Impact of a single hydrogen substitution by fluorine on the molecular interaction and miscibility between sorafenib and polymers. Mol Pharm 2018, https://doi.org/10.1021/acs.molpharmaceut.8b00970, 16, 318, 326.

  29. Baird JA, Eerdenbrugh BV, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99(9):3787–806.

    Article  CAS  PubMed  Google Scholar 

  30. Chang MJ, Myerson AS, Kwei TK. The effect of hydrogen bonding on vapor diffusion in water-soluble polymers. J Appl PolymSci. 1997;66(2):279–91.

    Article  CAS  Google Scholar 

  31. Sugisaki M, Suga H, Seki S. Calorimetric study of the glassy state. IV. Heat capacities of glassy water and cubic ice. Bull Chem Soc Jpn. 1968;41:2591–9.

    Article  CAS  Google Scholar 

  32. Brostow W, Chiu R, Kalogeras IM, Dova AV. Prediction of glass transition temperatures: binary blends and copolymers. Mater Lett. 2008;62(17–18):3152–5.

    Article  CAS  Google Scholar 

  33. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Sodium lauryl sulfate competitively interacts with HPMC-AS and consequently reduces Oral bioavailability of Posaconazole/HPMC-AS amorphous solid dispersion. Mol Pharm. 2016;13(8):2787–95.

    Article  CAS  PubMed  Google Scholar 

  34. Chai M, Niu Y, Youngs WJ, Rinaldi PL. Structure and conformation of DAB dendrimers in solution via multidimensional NMR techniques. J Am Chem Soc. 2001;123(20):4670–8.

    Article  CAS  PubMed  Google Scholar 

  35. Roscigno P, Asaro F, Pellizer G, Ortona O, Paduano L. Complex formation between poly(vinylpyrrolidone) and sodium Decyl sulfate studied through NMR. Langmuir. 2003;19(23):9638–44.

    Article  CAS  Google Scholar 

  36. Yu L. Surface mobility of molecular glasses and its importance in physical stability. Adv Drug DelivRev. 2016;100(1):3–9.

    Article  CAS  Google Scholar 

  37. Cai T, Zhu L, Yu L. Crystallization of organic glasses: effects of polymer additives on bulk and surface crystal growth in amorphous Nifedipine. Pharm Res. 2011;28(10):2458–66.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu L, Wang L, Yu L. Surface-enhanced crystallization of amorphous Nifedipine. Mol Pharm. 2008;5(6):921–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, H., Wang, S. et al. A Single Hydrogen to Fluorine Substitution Reverses the Trend of Surface Composition Enrichment of Sorafenib Amorphous Solid Dispersion upon Moisture Exposure. Pharm Res 36, 105 (2019). https://doi.org/10.1007/s11095-019-2632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2632-5

KEY WORDS

Navigation