Skip to main content

Advertisement

Log in

Skin Absorption of Anions: Part One. Methodology for In Vitro Cutaneous Absorption Measurements

Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Measurement of skin absorption of ions requires specific experimental protocols regarding the use of pig skin as a model, the viability of excised skin in water medium over 24 h, the presence of endogenous ions, and evaluation of the contributions of facilitated transport through ion channels and ion transporters.

Method

Absorption experiments of halide anions F, Cl, Br and I in excised skin were performed in Franz diffusion cells. Experiments were performed on human and porcine skin under various conditions so as to define and validate experimental protocols.

Results

The distributions of endogenous ions and the absorption kinetics of halide ions were similar in both porcine and human skin models. Fresh skin kept its viability over 24 h in salt-free water, allowing experiments following OECD guidelines. Permeation increased in the order F < Cl < Br < I for all receptor media and skin samples. Absorption was larger in fresh skin due to the transport through chloride channels or exchangers.

Conclusion

Skin absorption experiments of ions in Franz cells rely on working with fresh excised skin (human or porcine) and pure water as receptor fluid. Experiments with chloride blockers or frozen/thawed skin allow discriminating passive diffusion and facilitated transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CaCC:

Ca2+ activated Cl channels

CFTR:

Cystic fibrosis transmembrane conductance regulator

ClC:

Chloride channel

D:

Dermis

DF:

Donor fluid

DIDS:

4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid

HBSS:

Hank’s balanced salt solution. It contains 1 g.L−1 of glucose in its composition.

IAA-94:

Indanyloxyacetic acid

IC:

Ion chromatography

ICP-OES:

Inductively coupled plasma optical emission spectrometry

LDH:

Lactate deshydrogenase

NCC:

Sodium-chloride symporter (also known as Na+-Cl co-transporter)

NIS:

Sodium-iodide symporter

NKCC:

Sodium-potassium-chloride co-transporter

RF:

Receptor fluid

SC:

Stratum corneum

SSG:

Serum saline (physiological serum saline solution NaCl 9 g.L−1) containing 1 g.L−1 of glucose

VE:

Viable epidermis

WG:

Ultrapure water (resistivity >18 MΩ.cm at 25°C) containing 1 g.L−1 of glucose

References

  1. Hostynek J-J. Factors determining percutaneous metal absorption. Food Chem Toxicol. 2003;41:327–45.

    Article  CAS  PubMed  Google Scholar 

  2. La Count TD, Kasting GB. Human skin is permselective for the small, monovalent cations sodium and potassium but not for nickel and chromium. J Pharm Sci. 2013;102:2241–53.

    Article  PubMed  Google Scholar 

  3. Tymen H, Gerasimo P, Hoffschir D. Contamination and decontamination of rat and human skin with plutonium and uranium, studied with a Franz’s chamber. Int J Radiat Biol. 2000;76:1417–24.

    Article  CAS  PubMed  Google Scholar 

  4. Bolzinger MA, Bolot C, Galy G, Chabanel A, Pelletier J, Briançon S. Skin contamination by radiopharmaceuticals and decontamination strategies. Int J Pharm. 2010;402:44–9.

    Article  CAS  PubMed  Google Scholar 

  5. Phipps JB, Pasmanabhan RV, Lattin GA. Iontophoretic delivery of model inorganic and drug ions. J Pharm Sci. 1989;78:365–9.

    Article  CAS  PubMed  Google Scholar 

  6. Denda M, Hosoi J, Asida Y. Visual imaging of ion distribution in human epidermis. Biochem Biophys Res Commun. 2000;272:134–7.

    Article  CAS  PubMed  Google Scholar 

  7. Lin P, Gruenstein E. Pathways of Cl transport in human fibroblasts. Am J Physiol. 1988;255:112–22.

    Google Scholar 

  8. Mastrocola T, De Luca M, Rugolo M. Characterization of chloride transport pathways in cultured human keratinocytes. Biochim Biophys Acta. 1991;1097:275–82.

    Article  CAS  PubMed  Google Scholar 

  9. Bear CE. Phosphorylation-activated chloride channels in human skin fibroblasts. FEBS Lett. 1988;237:145–9.

    Article  CAS  PubMed  Google Scholar 

  10. Plog S, Mundhenk L, Langbein L, Gruber AD. Synthesis of porcine pCLCA2 protein during late differentiation of keratinocytes of epidermis and hair follicle inner root sheath. Cell Tissue Res. 2012;350:445–53.

    Article  CAS  PubMed  Google Scholar 

  11. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev. 2002;82:503–68.

    Article  CAS  PubMed  Google Scholar 

  12. Nilius B, Droogmans G. Amazing chloride channels: an overview. Acta Physiol Scand. 2003;177:119–47.

    Article  CAS  PubMed  Google Scholar 

  13. Denda M, Inoue K, Inomata S, Denda S. γ-Aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced by barrier disruption. J Investig Dermatol. 2002;119:1041–7.

    Article  CAS  PubMed  Google Scholar 

  14. Denda M, Fuziwara S, Inoue K. Influx of calcium and chloride ions into epidermal keratinocytes regulates exocytosis of epidermal lamellar bodies and skin permeability barrier homeostasis. J Investig Dermatol. 2003;121:362–7.

    Article  CAS  PubMed  Google Scholar 

  15. Perron B, Rodriguez AM, Leblanc G, Pourcher T. Cloning of the mouse sodium iodide symporter and its expression in the mammary gland and other tissues. J Endocrinol. 2001;170:185–96.

    Article  CAS  PubMed  Google Scholar 

  16. Chen T, Singleton L, Imbert I, Perrin A, Gondran C, McMullen R, et al. Effect of UVB irradiation on intracellular sodium level and chloride channel CFTR expression in normal human keratinocytes and skin biopsies. J Investig Dermatol. 2009;129(supplement 1s):S133,796.

    Google Scholar 

  17. von Zglinicki T, Lindberg M, Roomans GM, Forslind B. Water and ion distribution profiles in human skin. Acta Derm Venereol. 1993;73:340–3.

    Google Scholar 

  18. Forslind B, Lindberg M, Roomans GM, Pallon J, Werner-Linde Y. Aspects on the physiology of human skin: studies using particle probe analysis. Microsc Res Tech. 1997;38:373–86.

    Article  CAS  PubMed  Google Scholar 

  19. Bronaugh RL, Stewart RF, Congdon ER. Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol Appl Pharmacol. 1982;62:481–8.

    Article  CAS  PubMed  Google Scholar 

  20. Harrison SM, Barry BW, Dugard PH. Effects of freezing on human skin permeability. J Pharm Pharmacol. 1984;36:261–2.

    Article  CAS  PubMed  Google Scholar 

  21. Bronaugh RL, Stewart RF, Simon M. Methods for in vitro percutaneous absorption studies VII: use of excised human skin. J Pharm Sci. 1986;75:1094–7.

    Article  CAS  PubMed  Google Scholar 

  22. Smith CK, Moore CA, Elahi EN, Smart ATS, Hotchkiss SAM. Human skin absorption and metabolism of the contact allergens, cinnamic aldehyde, and cinnamic alcohol. Toxicol Appl Pharmacol. 2000;168:189–99.

    Article  CAS  PubMed  Google Scholar 

  23. OECD. Guidance document for the conduct of skin absorption studies. OECD series on testing and assessment: number 28. 2004.

  24. Messager S, Hann AC, Goddard PA, Dettmar PW, Maillard JY. Assessment of skin viability: is it necessary to use different methodologies? Skin Res Technol. 2003;9:321–30.

    Article  PubMed  Google Scholar 

  25. Collier SW, Sheikh NM, Sakr A, Lichtin JL, Stewart RF, Bronaugh RL. Maintenance of skin viability during in vitro percutaneous absorption/metabolism studies. Toxicol Appl Pharmacol. 1989;99:522–33.

    Article  CAS  PubMed  Google Scholar 

  26. Förster M, Bolzinger MA, Rovère MR, Damour O, Montagnac G, Briançon S. Confocal Raman microspectroscopy for evaluating the stratum corneum removal by 3 standard methods. Skin Pharmacol Physiol. 2011;24:103–12.

    Article  PubMed  Google Scholar 

  27. Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Investig Dermatol. 2004;122:14–9.

    Article  CAS  PubMed  Google Scholar 

  28. EN ISO 10304-1:2009: water quality. Determination of dissolved anions by liquid chromatography of ions. Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.

  29. Simon GA, Maibach HI. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations-an overview. Skin Pharmacol Appl Skin Physiol. 2000;13:229–34.

    Article  CAS  PubMed  Google Scholar 

  30. Verissimo A, Alves LC, Filipe P, Silva JN, Silva R, Ynsa MD, et al. Nuclear microscopy: a tool for imaging elemental distribution and percutaneous absorption in vivo. Microsc Res Tech. 2007;70:302–9.

    Article  CAS  PubMed  Google Scholar 

  31. Gontier E, Barberet P, Barbotteau Y, Habchi C, Incerti S, Moretto P, et al. Micro-PIXE characterization of different skin models. X-Ray Spectrom. 2005;34:381–8.

    Article  CAS  Google Scholar 

  32. Lee SH, Elias PM, Proksch E, Menon GK, Mao-Quiang M, Feingold KR. Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest. 1992;89:530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Denda M, Tsutsumi M, Inoue K, Crumrine D, Feingold KR, Elias PM. Potassium channel openers accelerate epidermal barrier recovery. Br J Dermatol. 2007;157:888–93.

    Article  CAS  PubMed  Google Scholar 

  34. Denda M, Katagiri C, Hirao T, Maruyama N, Takahashi M. Some magnesium salts and some magnesium salts and a mixture of magnesium and calcium salts accelerate skin barrier recovery. Arch Dermatol Res. 1999;291:560–3.

    Article  CAS  PubMed  Google Scholar 

  35. Halprin KM, Ohkawara A. Lactate production and lactate dehydrogenase in the human epidermis. J Investig Dermatol. 1966;47:222–6.

    Article  CAS  PubMed  Google Scholar 

  36. Reuss L, Hirst BH. Water transport controversies – an overview. J Physiol. 2002;54:1–2.

    Article  Google Scholar 

  37. Lyklema J. Fundamentals of interface and colloid science. Vol 1, Chap 5. London: Academic Press. pp. 5.15–5.31.

  38. Pitzer KS. Electrolyte theory - improvements since Debye and Hückel. Acc Chem Res. 1977;10:371–7.

    Article  CAS  Google Scholar 

  39. Guggenheim EA, Turgeon JC. Specific interactions of ions. Trans Faraday Soc. 1955;51:747–61.

    Article  CAS  Google Scholar 

  40. Kasting GB, Bowman LA. Electrical analysis of fresh, excised human skin: a comparison with frozen skin. Pharm Res. 1990;7:1141–6.

    Article  CAS  PubMed  Google Scholar 

  41. Burnette RR, Ongpipattanakul B. Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci. 1987;76:765–73.

    Article  CAS  PubMed  Google Scholar 

  42. Wulff H. New light on the “old” chloride channel blocker DIDS. ACS Chem Biol. 2008;3:399–401.

    Article  CAS  PubMed  Google Scholar 

  43. Elisei R, Vivaldi A, Ciampi R, Faviana P, Basolo F, Santini F, et al. Treatment with drugs able to reduce iodine efflux significantly increases the intracellular retention time in thyroid cancer cells stably transfected with sodium iodide symporter complementary deoxyribonucleic acid. J Clin Endocrinol Metab. 2006;91:2389–95.

    Article  CAS  PubMed  Google Scholar 

  44. Weber-Schurholz S, Erhard Wischmeyer E, Laurien M, Jockusch H, Schurholz T, Landry DW, et al. Indanyloxyacetic acid-sensitive chloride channels from outer membranes of skeletal muscle. J Biol Chem. 1993;268:547–51.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The support of the Ministère de l’Enseignement Supérieur et de la Recherche (France) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Alexandrine Bolzinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paweloszek, R., Briançon, S., Chevalier, Y. et al. Skin Absorption of Anions: Part One. Methodology for In Vitro Cutaneous Absorption Measurements. Pharm Res 33, 1564–1575 (2016). https://doi.org/10.1007/s11095-016-1909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1909-1

KEYWORDS

Navigation