Skip to main content
Log in

Development of 2D and 3D Mucus Models and Their Interactions with Mucus-Penetrating Paclitaxel-Loaded Lipid Nanocapsules

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

To study, diffusion through mucus (3D model) of different formulations of paclitaxel loaded lipid nanocapsules (Ptx-LNCs), to interpret the results in the light of LNC behavior at air-mucus interface (2D model).

Methods

LNC surface properties were modified with chitosan or poly(ethylene glycol) (PEG) coatings of different size (PEG 2,000 to 5,000 Da) and surface charges. LNC diffusion through 446 μm pig intestinal mucus layer was studied using Transwell®. LNCs were spread at the air-water-mucus interface then interfacial pressure and area changes were monitored and the efficiency of triglyceride (TG) inclusion was determined.

Results

Ptx-LNCs of surface charges ranging from −35.7 to +25.3 mV were obtained with sizes between 56.2 and 75.1 nm. The diffusion of paclitaxel in mucus was improved after encapsulation in neutral or positively charged particles (p < 0.05 vs Taxol®). No significative difference was observed in the 2,000–5,000 PEG length for diffusion both on the 2D or 3D models. On 2D model positive or neutral LNCs interacted less with mucus. Highest efficiency of TG inclusion was observed for particles with smallest PEG length.

Conclusions

The results obtained with 2D and 3D model allowed us to select the best candidates for in vivo studies (neutral or positive LNCs with smaller PEG length).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Takatsuka S, Kitazawa T, Morita T, Horikiri Y, Yoshino H. Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant. Eur J Pharm Biopharm. 2006;62(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  2. Shaw LR, Irwin WJ, Grattan TJ, Conway BR. The influence of excipients on the diffusion of ibuprofen and paracetamol in gastric mucus. Int J Pharm. 2005;290(1–2):145–54.

    Article  CAS  PubMed  Google Scholar 

  3. Mistry A, Glud SZ, Kjems J, Randel J, Howard KA, Stolnik S, et al. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium. J Drug Target. 2009;17(7):543–52.

    Article  CAS  PubMed  Google Scholar 

  4. Ezpeleta I, Arangoa MA, Irache JM, Stainmesse S, Chabenat C, Popineau Y, et al. Preparation of Ulex europaeus lectin-gliadin nanoparticle conjugates and their interaction with gastrointestinal mucus. Int J Pharm. 1999;191(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  5. Szentkuti L. Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J Control Release. 1997;46(3):233–42.

    Article  CAS  Google Scholar 

  6. Jain S, Kumar D, Swarnakar NK, Thanki K. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel. Biomaterials. 2012;33(28):6758–68.

    Article  CAS  PubMed  Google Scholar 

  7. Mura S, Hillaireau H, Nicolas J, Kerdine-Romer S, Le Droumaguet B, Delomenie C, et al. Biodegradable nanoparticles meet the bronchial airway barrier: how surface properties affect their interaction with mucus and epithelial cells. Biomacromolecules. 2011;12(11):4136–43.

    Article  CAS  PubMed  Google Scholar 

  8. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bravo-Osuna I, Vauthier C, Chacun H, Ponchel G. Specific permeability modulation of intestinal paracellular pathway by chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur J Pharm Biopharm. 2008;69(2):436–44.

    Article  CAS  PubMed  Google Scholar 

  11. Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci. 1997;63(11):1481–92.

    Article  CAS  Google Scholar 

  12. Crater JS, Carrier RL. Barrier Properties of Gastrointestinal Mucus to Nanoparticle Transport. Macromol Biosci. 2010;10(12):1473–83.

    Article  CAS  PubMed  Google Scholar 

  13. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19(6):875–80.

    Article  CAS  PubMed  Google Scholar 

  14. Anton N, Gayet P, Benoit JP, Saulnier P. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion. Int J Pharm. 2007;344(1–2):44–52.

    Article  CAS  PubMed  Google Scholar 

  15. Allen TM, Sapra P, Moase E. Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett. 2002;7(2):217–9.

    PubMed  Google Scholar 

  16. Perrier T, Saulnier P, Fouchet F, Lautram N, Benoit JP. Post-insertion into Lipid NanoCapsules (LNCs): From experimental aspects to mechanisms. Int J Pharm. 2010;396(1–2):204–9.

    Article  CAS  PubMed  Google Scholar 

  17. Peltier S, Oger JM, Lagarce F, Couet W, Benoit JP. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res. 2006;23(6):1243–50.

    Article  CAS  PubMed  Google Scholar 

  18. Roger E, Lagarce F, Benoit JP. The gastrointestinal stability of lipid nanocapsules. Int J Pharm. 2009;379(2):260–5.

    Article  CAS  PubMed  Google Scholar 

  19. Roger E, Lagarce F, Garcion E, Benoit JP. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release. 2009;140(2):174–81.

    Article  CAS  PubMed  Google Scholar 

  20. Roger E, Lagarce F, Garcion E, Benoit JP. Reciprocal competition between lipid nanocapsules and P-gp for paclitaxel transport across Caco-2 cells. Eur J Pharm Sci. 2010;40(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  21. Groo A-C, Saulnier P, Gimel J-C, Gravier J, Ailhas C, Benoit J-P, et al. Fate of Paclitaxel lipid nanocapsules in intestinal mucus in view of their oral delivery. Int J Nanomedecine. 2013;8(1):4291–302.

    Google Scholar 

  22. Artursson P, Borchardt RT. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm Res. 1997;14(12):1655–8.

    Article  CAS  PubMed  Google Scholar 

  23. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175(3):880–5.

    Article  CAS  PubMed  Google Scholar 

  24. Szebeni J. Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2–3):106–21.

    Article  CAS  PubMed  Google Scholar 

  25. Yudin AI, Hanson FW, Katz DF. Human cervical mucus and its interaction with sperm: a fine-structural view. Biol Reprod. 1989;40(3):661–71.

    Article  CAS  PubMed  Google Scholar 

  26. Dawson M, Krauland E, Wirtz D, Hanes J. Transport of polymeric nanoparticle gene carriers in gastric mucus. Biotechnol Prog. 2004;20(3):851–7.

    Article  CAS  PubMed  Google Scholar 

  27. Lieleg O, Vladescu I, Ribbeck K. Characterization of particle translocation through mucin hydrogels. Biophys J. 2010;98(9):1782–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lai SK, Suk JS, Pace A, Wang YY, Yang M, Mert O, et al. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials. 2011;32(26):6285–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Huang Y, Leobandung W, Foss A, Peppas NA. Molecular aspects of muco- and bioadhesion: Tethered structures and site-specific surfaces. J Control Release. 2000;65(1–2):63–71.

    Article  CAS  PubMed  Google Scholar 

  30. Yoncheva K, Guembe L, Campanero MA, Irache JM. Evaluation of bioadhesive potential and intestinal transport of pegylated poly(anhydride) nanoparticles. Int J Pharm. 2007;334(1–2):156–65.

    Article  CAS  PubMed  Google Scholar 

  31. Yoncheva K, Lizarraga E, Irache JM. Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties. Eur J Pharm Sci. 2005;24(5):411–9.

    Article  CAS  PubMed  Google Scholar 

  32. Larhed AW, Artursson P, Gråsjö J, Björk E. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci. 1997;86(6):660–5.

    Article  CAS  PubMed  Google Scholar 

  33. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80.

    Article  CAS  PubMed  Google Scholar 

  34. Zabaleta V, Ponchel G, Salman H, Agueros M, Vauthier C, Irache JM. Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: Permeability and pharmacokinetic study. Eur J Pharm Biopharm. 2012;81(3):514–23.

    Article  CAS  PubMed  Google Scholar 

  35. Shi L, Miller C, Caldwell KD, Valint P. Effects of mucin addition on the stability of oil-water emulsions. Colloids Surf B: Biointerfaces. 1999;15(3–4):303–12.

    Article  CAS  Google Scholar 

  36. Proust JE, Baszkin A, Boissonnade MM. Adsorption of bovine submaxillary mucin on surface-oxidized polyethylene films. J Colloid Interface Sci. 1983;94(2):421–9.

    Article  CAS  Google Scholar 

  37. Khanvilkar K, Donovan MD, Flanagan DR. Drug transfer through mucus. Adv Drug Deliv Rev. 2001;48(2–3):173–93.

    Article  CAS  PubMed  Google Scholar 

  38. Minkov I, Ivanova T, Panaiotov I, Proust J, Saulnier P. Reorganization of lipid nanocapsules at air-water interface: I. Kinetics of surface film formation. Colloids Surf B: Biointerfaces. 2005;45(1):14–23.

    Article  CAS  PubMed  Google Scholar 

  39. Minkov I, Ivanova T, Panaiotov I, Proust J, Saulnier P. Reorganization of lipid nanocapsules at air-water interface: Part 2. Properties of the formed surface film. Colloids Surf B: Biointerfaces. 2005;44(4):197–203.

    Article  CAS  PubMed  Google Scholar 

  40. Pavinatto FJ, Caseli L, Pavinatto A, Dos Santos DS, Nobre TM, Zaniquelli MED, et al. Probing Chitosan and Phospholipid Interactions Using Langmuir and Langmuir-Blodgett Films as Cell Membrane Models. Langmuir. 2007;23(14):7666–71.

    Article  CAS  PubMed  Google Scholar 

  41. Silva CA, Nobre TM, Pavinatto FJ, Oliveira Jr ON. Interaction of chitosan and mucin in a biomembrane model environment. J Colloid Interface Sci. 2012;376(1):289–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Lagarce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groo, AC., Mircheva, K., Bejaud, J. et al. Development of 2D and 3D Mucus Models and Their Interactions with Mucus-Penetrating Paclitaxel-Loaded Lipid Nanocapsules. Pharm Res 31, 1753–1765 (2014). https://doi.org/10.1007/s11095-013-1280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1280-4

KEY WORDS

Navigation