Skip to main content

Advertisement

Log in

Sterically Stabilized Liposomes Incorporating the Novel Anticancer Agent Phospho-Ibuprofen (MDC-917): Preparation, Characterization, and In Vitro/In Vivo Evaluation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To incorporate phospho-ibuprofen (P-I), a lipophilic, water insoluble novel anti-cancer agent, into pegylated liposomes and upon formulation optimization to evaluate its antitumor activity in vitro and in vivo.

Methods

P-I loaded liposomes were prepared using the thin-film hydration method, and characterized for size, zeta potential, drug content and drug release. We examined their physical stability by particle size changes; their lyophilization ability in the presence of cryoprotectants; and their antitumor activity in vitro in human cancer cell lines and in vivo in a xenograft murine model.

Results

P-I was successfully loaded into liposomes consisting of soy-PC and PEG2000-PE. These liposomes were <150 nm in diameter; exhibited prolonged stability in suspension and can be lyophilized using sucrose as cryoprotectant. P-I liposomes inhibited the growth of human cancer cell lines in vitro and in vivo of xenograft in nude mice to a greater extent than free P-I.

Conclusions

High levels of P-I can be incorporated into liposomes which can be lyophilized in the presence of sucrose and showed good stability upon storage. Moreover, these drug-incorporating liposomes were capable of inhibiting the growth of xenografted tumors in mice more effectively than free P-I. These results justify further development of the P-I liposomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EE:

entrapment efficiency

egg-PC:

egg-phosphatidylcholine

P-I:

phospho-ibuprofen

RES:

recticuloendothelial system

soy-PC:

soy-phosphatidylcholine

soy-PE:

soy-phosphatidylethanolamine

soy-PS:

soy-phosphatidylserine

REFERENCES

  1. Coussensand LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  Google Scholar 

  2. Harris RE, Namboodiri KK, Farrar WB. Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology. 1996;7:203–5.

    Article  PubMed  CAS  Google Scholar 

  3. Marnett LJ. Aspirin and related nonsteroidal anti-inflammatory drugs as chemopreventive agents against colon cancer. Prev Med. 1995;24:103–6.

    Article  PubMed  CAS  Google Scholar 

  4. Meier CR, Schmitz S, Jick H. Association between acetaminophen or nonsteroidal antiinflammatory drugs and risk of developing ovarian, breast, or colon cancer. Pharmacotherapy. 2002;22:303–9.

    Article  PubMed  CAS  Google Scholar 

  5. Harris RE, Beebe-Donk J, Doss H, Burr Doss D. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep. 2005;13:559–83.

    PubMed  CAS  Google Scholar 

  6. Huang L, Zhu C, Sun Y, Xie G, Mackenzie GG, Qiao G, et al. Phospho-sulindac (OXT-922) inhibits the growth of human colon cancer cell lines: a redox/polyamine-dependent effect. Carcinogenesis. 2010;31:1982–90.

    Article  PubMed  CAS  Google Scholar 

  7. Mackenzie GG, Sun Y, Huang L, Xie G, Ouyang N, Gupta RC, et al. Phospho-sulindac (OXT-328), a novel sulindac derivative, is safe and effective in colon cancer prevention in mice. Gastroenterology. 2010;139:1320–32.

    Article  PubMed  CAS  Google Scholar 

  8. Xie G, Sun Y, Nie T, Mackenzie GG, Huang L, Kopelovich L, et al. Phospho-ibuprofen (MDC-917) is a novel agent against colon cancer: efficacy, metabolism, and pharmacokinetics in mouse models. J Pharmacol Exp Ther. 2011;337:876–86.

    Article  PubMed  CAS  Google Scholar 

  9. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    Article  PubMed  CAS  Google Scholar 

  10. Crosasso P, Ceruti M, Brusa P, Arpicco S, Dosio F, Cattel L. Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Release. 2000;63:19–30.

    Article  PubMed  CAS  Google Scholar 

  11. Markman M. Pegylated liposomal doxorubicin: appraisal of its current role in the management of epithelial ovarian cancer. Cancer Manag Res. 2011;3:219–25.

    Article  PubMed  CAS  Google Scholar 

  12. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    Article  PubMed  CAS  Google Scholar 

  13. Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliver Rev. 1997;24:337–44.

    Article  CAS  Google Scholar 

  14. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–6.

    PubMed  CAS  Google Scholar 

  15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  16. Hwang TL, Lee WR, Hua SC, Fang JY. Cisplatin encapsulated in phosphatidylethanolamine liposomes enhances the in vitro cytotoxicity and in vivo intratumor drug accumulation against melanomas. J Dermatol Sci. 2007;46:11–20.

    Article  PubMed  CAS  Google Scholar 

  17. Roy MT, Gallardo M, Estelrich J. Influence of size on electrokinetic behavior of phosphatidylserine and phosphatidylethanolamine lipid vesicles. J Colloid Interface Sci. 1998;206:512–7.

    Article  PubMed  CAS  Google Scholar 

  18. Bittmanand R, Blau L. The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes. Biochemistry. 1972;11:4831–9.

    Article  Google Scholar 

  19. Papahadjopoulos D, Cowden M, Kimelberg H. Role of cholesterol in membranes. Effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim Biophys Acta. 1973;330:8–26.

    Article  PubMed  CAS  Google Scholar 

  20. Sharmaand A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm. 1997;154:123–40.

    Article  Google Scholar 

  21. Yoshiharaand E, Nakae T. Cytolytic activity of liposomes containing stearylamine. Biochim Biophys Acta. 1986;854:93–101.

    Article  Google Scholar 

  22. Crowe LM, Crowe JH, Rudolph A, Womersley C, Appel L. Preservation of freeze-dried liposomes by trehalose. Arch Biochem Biophys. 1985;242:240–7.

    Article  PubMed  CAS  Google Scholar 

  23. Huang L, Mackenzie G, Ouyang N, Sun Y, Xie G, Johnson F, et al. The novel phospho-non-steroidal anti-inflammatory drugs, OXT-328, MDC-22 and MDC-917, inhibit adjuvant-induced arthritis in rats. Br J Pharmacol. 2011;162:1521–33.

    Article  PubMed  CAS  Google Scholar 

  24. Matsumuraand Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    Google Scholar 

  25. Sarisuta N, Benjakul R, Panyarachun B. Preparation of dry reconstituted liposomal powder by freeze-drying at room temperature. J Liposome Res. 2011;21:28–37.

    Article  PubMed  Google Scholar 

  26. Fahr A, van Hoogevest P, May S, Bergstrand N, Leigh MLS. Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci. 2005;26:251–65.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

Financial support was from NIH grant HHSN261201000109C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Rigas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattheolabakis, G., Nie, T., Constantinides, P.P. et al. Sterically Stabilized Liposomes Incorporating the Novel Anticancer Agent Phospho-Ibuprofen (MDC-917): Preparation, Characterization, and In Vitro/In Vivo Evaluation. Pharm Res 29, 1435–1443 (2012). https://doi.org/10.1007/s11095-011-0619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0619-y

KEY WORDS

Navigation