Skip to main content

Advertisement

Log in

Preparation and Characterization of Nickel Nanoparticles for Binding to His-tag Proteins and Antigens

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of these studies was to prepare nanoparticles (NPs) with a small amount of surface-chelated nickel for obtaining enhanced binding of histidine-tagged (his-tag) proteins compared to non-histidine-tagged protein binding to charged nanoparticles.

Materials and Methods

NPs were prepared from oil-in-water microemulsion precursors using emulsifying wax, 3 mM Brij 78 and 0.1 mM DOGS–NTA–Ni lipid (referred to as Ni-NPs). The amount of lipid entrapped in the NPs was quantitated by atomic emission spectroscopy (AES). The Ni-NPs were investigated for binding to two his-tag proteins, green fluorescent protein (GFP) and his-tag HIV-1 Gag p24. In vivo studies in mice were carried out to evaluate the immune responses obtained to his-tag Gag p24 bound to Ni-NPs.

Results

AES studies demonstrated that approximately 5% of the DOGS–NTA–Ni lipid used was entrapped in the NPs. The optimal binding ratio his-tag GFP and his-tag Gag p24 to Ni-NPs was found to be 1:33.7 and 1:35.4 w/w, respectively. This interaction was stable at 37°C in PBS, pH 7.4 over 4 h and the interaction of his-tag GFP with the Ni-NPs was enhanced compared to control NPs prepared with no Ni on the surface (NTA-NPs). The in vivo studies demonstrated enhanced serum IgG and IgG2a responses to his-tag Gag p24 bound to Ni-NPs compared to protein adjuvanted with Alum or adsorbed on the surface of control NTA-NPs.

Conclusions

Ni-NPs can be used to bind strongly to his-tag proteins. This system was demonstrated to have potential applications in vaccine delivery for enhancing immune responses to protein-based vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. K. Gupta and G. R. Siber. Adjuvants for human vaccines—current status, problems and future prospects. Vaccine 13:1263–1276 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. J. R. Pink and M. P. Kieny. 4th meeting on novel adjuvants currently in/close to human clinical testing world health organization—organisation Mondiale de la Sante Fondation Merieux, Annecy, France, 23–25, June 2003. Vaccine 22:2097–2102 (2004).

    Article  PubMed  Google Scholar 

  3. M. Singh and D. T. O’Hagan. Recent advances in vaccine adjuvants. Pharm. Res. 19:715–728 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. D. T. O’Hagan and M. Singh. Microparticles as vaccine adjuvants and delivery systems. Expert Rev. Vaccines 2:269–283 (2003).

    Article  PubMed  Google Scholar 

  5. W. Jiang, R. K. Gupta, M. C. Deshpande, and S. P. Schwendeman. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv. Drug Deliv. Rev. 57:391–410 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. G. F. Kersten and D. J. Crommelin. Liposomes and ISCOMs. Vaccine 21:915–920 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. A. G. Coombes, E. C. Lavelle, P. G. Jenkins, and S. S. Davis. Single dose, polymeric, microparticle-based vaccines: the influence of formulation conditions on the magnitude and duration of the immune response to a protein antigen. Vaccine 14:1429–1438 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. R. K. Gupta, M. Singh, and D. T. O’Hagan. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev. 32:225–246 (1998).

    Article  PubMed  Google Scholar 

  9. A. I. Bot, D. J. Smith, S. Bot, L. Dellamary, T. E. Tarara, S. Harders, W. Phillips, J. G. Weers, and C. M. Woods. Receptor-mediated targeting of spray-dried lipid particles coformulated with immunoglobulin and loaded with a prototype vaccine. Pharm. Res. 18:971–979 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. M. Sugimoto, K. Ohishi, M. Fukasawa, K. Shikata, H. Kawai, H. Itakura, M. Hatanaka, R. Sakakibara, M. Ishiguro, M. Nakata, et al. Oligomannose-coated liposomes as an adjuvant for the induction of cell-mediated immunity. FEBS Lett. 363:53–56 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. H. Xie, I. Gursel, B. E. Ivins, M. Singh, D. T. O’Hagan, J. B. Ulmer, and D. M. Klinman. CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infect. Immun. 73:828–833 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. J. Kazzaz, M. Singh, M. Ugozzoli, J. Chesko, E. Soenawan, and D. T. O’Hagan. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control Release 110:566–573 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. D. T. O’Hagan, M. L. MacKichan, and M. Singh. Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng. 18:69–85 (2001).

    Article  PubMed  Google Scholar 

  14. A. Moore, P. McGuirk, S. Adams, W. C. Jones, J. P. McGee, D. T. O’Hagan, and K. H. Mills. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8 cytotoxic T lymphocytes and CD4 Th1 cells. Vaccine 13:1741–1749 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. A. M. Carcaboso, R. M. Hernandez, M. Igartua, J. E. Rosas, M. E. Patarroyo, and J. L. Pedraz. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 22:1423–1432 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. M. Singh, J. Chesko, J. Kazzaz, M. Ugozzoli, E. Kan, I. Srivastava, and D. T. O’Hagan. Adsorption of a novel recombinant glycoprotein from HIV (Env gp120dV2 SF162) to anionic PLG microparticles retains the structural integrity of the protein, whereas encapsulation in PLG microparticles does not. Pharm. Res. 21:2148–2152 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. D. T. O’Hagan. Microparticles and polymers for the mucosal delivery of vaccines. Adv. Drug Deliv. Rev. 34:305–320 (1998).

    Article  PubMed  Google Scholar 

  18. A. Debin, R. Kravtzoff, J. V. Santiago, L. Cazales, S. Sperandio, K. Melber, Z. Janowicz, D. Betbeder, and M. Moynier. Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine 20:2752–2763 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. M. Singh, J. Kazzaz, M. Ugozzoli, J. Chesko, and D. T. O’Hagan. Charged polylactide co-glycolide microparticles as antigen delivery systems. Expert. Opin. Biol. Ther. 4:483–491 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Z. Cui and R. J. Mumper. Coating of cationized protein on engineered nanoparticles results in enhanced immune responses. Int. J. Pharm. 238:229–239 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. Z. Cui, J. Patel, M. Tuzova, P. Ray, R. Phillips, J. G. Woodward, A. Nath, and R. J. Mumper. Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 22:2631–2640 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. J. Patel, D. Galey, J. Jones, P. Ray, J. G. Woodward, A. Nath, and R. J. Mumper. HIV-1 Tat-coated nanoparticles result in enhanced humoral immune responses and neutralizing antibodies compared to alum adjuvant. Vaccine 24:3564–3573 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. P. Elamanchili, M. Diwan, M. Cao, and J. Samuel. Characterization of poly(d,l-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. M. E. Lutsiak, D. R. Robinson, C. Coester, G. S. Kwon, and J. Samuel. Analysis of poly(d,l-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm. Res. 19:1480–1487 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. H. Sun, K. G. Pollock, and J. M. Brewer. Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21:849–855 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. V. Weissig, J. Lasch, A. L. Klibanov, and V. P. Torchilin. A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett. 202:86–90 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. V. P. Torchilin, T. S. Levchenko, A. N. Lukyanov, B. A. Khaw, A. L. Klibanov, R. Rammohan, G. P. Samokhin, and K. R. Whiteman. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta 1511:397–411 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. T. D. Heath and F. J. Martin. The development and application of protein–liposome conjugation techniques. Chem. Phys. Lipids 40:347–358 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. J. Crowe, B. S. Masone, and J. Ribbe. One-step purification of recombinant proteins with the 6xHis tag and Ni–NTA resin. Methods Mol. Biol. 58:491–510 (1996).

    PubMed  CAS  Google Scholar 

  30. J. Porath, J. Carlsson, I. Olsson, and G. Belfrage. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599 (1975).

    Article  PubMed  CAS  Google Scholar 

  31. E. Hochuli, H. Dobeli, and A. Schacher. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 411:177–184 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. J. Schmitt, H. Hess, and H. G. Stunnenberg. Affinity purification of histidine-tagged proteins. Mol. Biol. Rep. 18:223–230 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. S. A. Lauer and J. P. Nolan. Development and characterization of Ni–NTA-bearing microspheres. Cytometry 48:136–145 (2002).

    Article  PubMed  CAS  Google Scholar 

  34. H. Celia, E. Wilson-Kubalek, R. A. Milligan, and L. Teyton. Structure and function of a membrane-bound murine MHC class I molecule. Proc. Natl. Acad. Sci. USA 96:5634–5639 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. G. G. Chikh, W. M. Li, M. P. Schutze-Redelmeier, J. C. Meunier, and M. B. Bally. Attaching histidine-tagged peptides and proteins to lipid-based carriers through use of metal-ion-chelating lipids. Biochim. Biophys. Acta. 1567:204–212 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. C. L. van Broekhoven, C. R. Parish, C. Demangel, W. J. Britton, and J. G. Altin. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res. 64:4357–4365 (2004).

    Article  PubMed  Google Scholar 

  37. E. O. Freed. HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251:1–15 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. F. Buseyne, M. McChesney, F. Porrot, S. Kovarik, B. Guy, and Y. Riviere. Gag-specific cytotoxic T lymphocytes from human immunodeficiency virus type 1-infected individuals: Gag epitopes are clustered in three regions of the p24gag protein. J. Virol. 67:694–702 (1993).

    PubMed  CAS  Google Scholar 

  39. J. Kazzaz, J. Neidleman, M. Singh, G. Ott, and D. T. O’Hagan. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J. Control Release 67:347–356 (2000).

    Article  PubMed  CAS  Google Scholar 

  40. V. Novitsky, H. Cao, N. Rybak, P. Gilbert, M. F. McLane, S. Gaolekwe, T. Peter, I. Thior, T. Ndung’u, R. Marlink, T. H. Lee, and M. Essex. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J. Virol. 76:10155–10168 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. R. Zuniga, A. Lucchetti, P. Galvan, S. Sanchez, C. Sanchez, A. Hernandez, H. Sanchez, N. Frahm, C. H. Linde, H. S. Hewitt, W. Hildebrand, M. Altfeld, T. M. Allen, B. D. Walker, B. T. Korber, T. Leitner, J. Sanchez, and C. Brander. Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control. J. Virol. 80:3122–3125 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. M. O. Oyewumi and R. J. Mumper. Gadolinium-loaded nanoparticles engineered from microemulsion templates. Drug Dev. Ind. Pharm. 28:317–328 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Z. Cui and R. J. Mumper. Genetic immunization using nanoparticles engineered from microemulsion precursors. Pharm. Res. 19:939–946 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. M. L. Guler, N. G. Jacobson, U. Gubler, and K. M. Murphy. T cell genetic background determines maintenance of IL-12 signaling: effects on BALB/c and B10.D2 T helper cell type 1 phenotype development. J. Immunol. 159:1767–1774 (1997).

    PubMed  CAS  Google Scholar 

  45. M. Bix, Z. E. Wang, B. Thiel, N. J. Schork, and R. M. Locksley. Genetic regulation of commitment to interleukin 4 production by a CD4() T cell-intrinsic mechanism. J. Exp. Med. 188:2289–2299 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. J. A. Graham, F. J. Miller, M. J. Daniels, E. A. Payne, and D. E. Gardner. Influence of cadmium, nickel, and chromium on primary immunity in mice. Environ. Res. 16:77–87 (1978).

    Article  PubMed  CAS  Google Scholar 

  47. R. J. Smialowicz, R. R. Rogers, M. M. Riddle, and G. A. Stott. Immunologic effects of nickel: I. Suppression of cellular and humoral immunity. Environ. Res. 33:413–427 (1984).

    Article  PubMed  CAS  Google Scholar 

  48. NPER Association and ND Institute. Safe Use of Nickel in the Workplace. Nickel Development Institute and Nickel Producers Environmental Research Association, Durham, North Carolina, 1997.

Download references

Acknowledgments

This research was funded by NIH-NIAID AI058842 to RJM and JGW. J. Patel was supported, in part, by a Pre-doctoral fellowship received from the American Foundation for Pharmaceutical Education and the 2005 Dissertation Year Fellowship received from the University of Kentucky Graduate School. The authors would like to thank Tricia Coakley in the Environmental Research and Training Laboratory (ERTL) at the University of Kentucky for her technical assistance in analyzing nanoparticle samples by AES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Mumper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, J.D., O’Carra, R., Jones, J. et al. Preparation and Characterization of Nickel Nanoparticles for Binding to His-tag Proteins and Antigens. Pharm Res 24, 343–352 (2007). https://doi.org/10.1007/s11095-006-9154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9154-7

Key words

Navigation