Skip to main content
Log in

Antimicrobial, Antifungal and Enzymatic Profiling of Newly Synthesized Heavy Metal Complexes of Gemifloxacin

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Three new heavy metal complexes of gemifloxacin (GMFX) were synthesized in 2:1 (L:M) ratio having good percent yield, characterized through physico-chemical and spectroscopic parameters including UV-Vis, TLC, FT-IR, NMR, and elemental (CHN) analysis. The gemifloxacin binds with metals (As, Ag, and Pb) bi-dentately as evident from the spectroscopic studies. These newly synthesized heavy metal complexes of gemifloxacin have been evaluated for their biological activities (antimicrobial and antifungal activities). Their enzymatic profiling was also determined against urease and alpha-chymotrypsin. Results obtained were then statistically analyzed through one way ANOVA and Dunnett’s test by using SPSS version 20.0 revealing that gemifloxacin act as bidentate ligand in complexation with heavy metals, and all newly synthesized complexes possess good antibacterial activities against P.mirabilis, S. typhi, E. coli, P. aureogenosa, K. pneumonia and S. flexneri. Complexes G-M13 and G-M11 showed increased activity against Citrobacter species, while G-M12 showed increased activity against C. albicans in comparison to gemifloxacin. Against S. faetures and S. aureus, G-M13 and G-M12 showed increased activity while G-M11 showed less activity than gemifloxacin. These complexes also possess mild to moderate activity against urease, whereas synthesized complexes show reduced response against α-chymotrypsin. Further emphasis and research on these complexes may place these as urease specific inhibitors in therapeutic agents’ index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. Albert, in: Selective Toxicity. The Physico-Chemical Basis of Therapy, Chapman & Hall, London (1979), pp. 421 – 427.

  2. M. N. Hughes, in: The Inorganic Chemistry of Biological Processes, John Wiley, New York (1981), pp. 177 – 181.

  3. E. K. Efthimiadou, S. Sanakis, N. Katsaros, et al., Polyhedron, No. 26, 1148 – 1158 (2007).

  4. K. Martin and M. S. Hosam, in: Introductory Chapter: An introduction to Trace Elements (2018). https://doi.org/10.5772/intechopen.75010

  5. I. Turel, Coord. Chem. Rev., No. 232, 27 – 47 (2002).

  6. I. Turel, I. Leban and N. Bukovec, J. Inorg. Biochem., No. 56, 273 – 282 (1994).

  7. S. C. Wallis, L. R. Gahan, B. G. Charles, et al., J. Inorg. Biochem., No. 62, 1 – 16 (1992).

  8. Z. F. Chen, R. G. Xiong, J. Zhang, et al., Inorg. Chem., No. 40, 4075–4077 (2001).

  9. I. Turel, K. Gruber, I. Leban, and N. Bukovec., J. Inorg. Biochem., No. 61, 197 – 212 (1996).

  10. Z. F. Chen, L. Bai-Qin, Y. R. Xie, et al., Inorg. Chem. Comm., No. 4, 346 – 349 (2004).

  11. L. Z. Wang, Z. F. Chen, X. S. Wang, et al., Chin. J. Inorg. Chem., No. 18, 1185 – 1190 (2002).

  12. N. Sultana, M. S. Arayne, S. Gul, and S. Shamim., J. Mol. Struct., No. 975, 285 – 291 (2010).

  13. S. Arayne, N. Sultana, U. Haroon, and M. A. Mesaik., Bioinorg. Chem. Appl. (2009). https://doi.org/10.1155/2009/914105

  14. N. Sultana, A. Naz, M. S. Arayne, and M. A. Mesaik., J. Mol. Struct., No. 969, 17 – 24 (2010).

  15. S. Gul, N. Sultana, M. S. Arayne, et al., J. Chem. (2013). Article ID 306385.

  16. P. MacCarthy., Anal. Chem., No. 50, 2165 (1978).

  17. R. A. Marusak, K. Doan, and S. D. Cummings, in: Integrated Approach to Coordination Chemistry: an Inorganic laboratory Guide, Experiment 3.6: Visible Spectroscopic Analysis and Job’s Plot, Willey Interscience., John Willey & Sons. Inc. (2007), pp. 75.

  18. EUCAST. Antimicrobial Susceptibility Testing. EUCAST Disk Diffusion Method. Version 6.0, 2017. http://www.eucast.org/astofbacteria/previousversionsofdocuments/

  19. E. Jonasson, E. Matuschek, and G. Kahlmeter., J. Antimicrob., 75(4), 968–978 (2020).

  20. R. Sharma, K. Tiwari, V. M. Belmar, et al., BMRJ, 11(4), 1 – 8 (2016).

    Article  Google Scholar 

  21. M. Akhtar, N. Sultana, M. S. Arayne, et al., Pak. J. Pharm. Sci., 32(3), 1301 – 1306 (2019).

    CAS  PubMed  Google Scholar 

  22. M. H. Badraddin and A. M. Mahmoud, Profiles Drug Subst. Excip. Relat. Methodol., No. 6, 151 – 168 (2011).

  23. C. S. Paima, F. Führa, M. T. Martinsa, et al., Biomed. Chromatogr., No. 30, 459 – 465 (2016).

  24. D. L. Pavia, G. M. Lampman, and G. S. Kriz, in: Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, Brooks / Cole, Philadelphia, (2009).

Download references

Conflict of Interests

The authors declare that they have no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to this work.

Corresponding author

Correspondence to S. Gul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, S., Gul, S., Khan, A. et al. Antimicrobial, Antifungal and Enzymatic Profiling of Newly Synthesized Heavy Metal Complexes of Gemifloxacin. Pharm Chem J 55, 1033–1039 (2022). https://doi.org/10.1007/s11094-021-02534-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02534-6

Keywords

Navigation