Skip to main content
Log in

Effect of phonons on optical properties of RbCl quantum pseudodot qubits

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, an electron which is strongly coupled to the strong electron-longitudinal optical (LO) phonon in RbCl quantum pseudodot qubits is considered. First, we employ the Pekar variational method and obtain the eigenenergies and eigenfunctions of the ground and the first-excited states of the system. Then, we have studied optical properties of the system under strong electron-LO phonon coupling. In this regard, the refractive index changes and absorption coefficient of the system are obtained using compact-density-matrix approach and iterative method. It is found that the absorption coefficients show saturation in the presence of phonon effect. This behavior occurs at small quantum size and for different potential height. Our results show that both the structure parameters and phonon effect have a great effect on the total absorption and refractive index changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi, S.: Material parameters of Inx Ga1-x Asy P1-y and related binaries. J. Appl. Phys. 58, R1–R29 (1985)

    Article  ADS  Google Scholar 

  • Ahn, D., Chuang, S.L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron. 23, 2196–2204 (1987)

    Article  ADS  Google Scholar 

  • Aspnes, D.E.: GaAs lower conduction-band minima: ordering and properties. Phys. Rev. B 14, 5331–5338 (1976)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics, 2nd edn. Academic Press, Cambridge (2003)

    Google Scholar 

  • Chen, Y.J., Xiao, J.L.: The temperature effect of the parabolic linear bound potential quantum dot qubit. Acta Phys. Sinica 57, 6758–6762 (2008)

    Google Scholar 

  • Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum coputer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  ADS  MATH  Google Scholar 

  • Ezaki, T., Mori, N., Hamaguchi, C.: Bolzmann equation for spin-dependent transport in magnetic inhomogeneous systems. Phys. Rev. B 56, 6428–6435 (1998)

    Article  ADS  Google Scholar 

  • Feng, L.Q., Xiao, J.L.: The effects of temperature and electric field on the properties of the polaron in a RbCl quantum pseudodot. Opt. Quant. Electron. 48, 459–465 (2016)

    Article  Google Scholar 

  • Feng, G., Xu, G., Long, G.: Experimental realization of nanadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501–190505 (2013)

    Article  ADS  Google Scholar 

  • Hansom, J., Carsten, H., Schulte, H., Gall, C.L., Matthiesen, C., Clarke, E., Hugues, M., Taylor, M.J., Atature, M.: Environment-assisted quantum control of a solid-state spin via coherent dark states. Nat. Phys. 10, 725–730 (2014)

    Google Scholar 

  • Ikhdair, S.M., Hamzavi, M.: A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields. Phys. B 407, 4198–4207 (2012)

    Article  ADS  Google Scholar 

  • Khordad, R.: Effect of impurity bound polaron on optical absorption in a GaAs modified Gaussian quantum dot. Opt. Quant. Electron. 48, 251–259 (2016)

    Article  Google Scholar 

  • Kuhn, K.J., Lyengar, G.U., Yee, J.: Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1− x As quantum wells. J. Appl. Phys. 70, 5010–5016 (1991)

    Article  ADS  Google Scholar 

  • Landau, L.D., Pekar, S.I.: Effective mass of a polaron. Zh. Eksp. Teor. Fiz. 18, 419–423 (1948)

    Google Scholar 

  • Li, N., Guo, K.X., Shao, S.: Polaron effects on the optical rectification in a two-dimensional quantum pseudodot system. Opt. Quant. Electron. 44, 493–502 (2012)

    Article  Google Scholar 

  • Mosca, M.: Quantum Algorithms Computational Complexity. Springer, New York (2012)

    Google Scholar 

  • Nielsen, M.A., Chang, I.L.: Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Passante, G., Moussa, O., Trottier, D.A., Laamme, R.: Experimental detection of nonclassical correlations in mixed-state quantum computation. Phys. Rev. A 84, 044302–044310 (2011)

    Article  ADS  Google Scholar 

  • Pekar, S.I.: Untersuchungen u¨ber die Elektronen-theorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  • Pekar, S.I., Deigen, M.F.: Polaron in advanced materials. Zh. Eksp. Teor. Fiz. 18, 481–486 (1948)

    Google Scholar 

  • Roloff, R., Eissfeller, T., Eissfeller, T., Vogl, P.: Electric g tensor control and spin echo of a hole-spin qubit in a quantum dot molecule. New J. Phys. 12, 093012–093020 (2010)

    Article  ADS  Google Scholar 

  • Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M., Blatt, R.: Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011)

    Article  ADS  Google Scholar 

  • Sun, Y., Ding, Z.H., Xiao, J.L.: The effect of phonons in RbCl quantum pseudodot qubits. J. Electron. Mater. 45, 3576–3580 (2016)

    Article  ADS  Google Scholar 

  • Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sorensen, A.S., Hemmer, R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  ADS  Google Scholar 

  • Unlu, S., Karabulut, I., Safak, H.: Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Phys. E 33, 319–324 (2006)

    Article  Google Scholar 

  • Wang, Z.W., Xiao, J.L.: Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Phys. Sinica 56, 678–682 (2007)

    Google Scholar 

  • Wang, Z.W., Li, W.P., Yin, J.W., Xiao, J.L.: Properties of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 49, 311–314 (2008)

    Article  ADS  Google Scholar 

  • Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–672 (2012)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: The effect of electric field on an asymmetric quantum dot qubit. Quantum Inf. Process. 12, 3707–3716 (2013)

    Article  ADS  MATH  Google Scholar 

  • Xiao, J.L.: Effects of electric field and temperature on RbCl asymmetry quantum dot qubit. J. Phys. Soc. Jpn. 83, 034004–034007 (2014a)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: Influences of temperature and impurity on excited state of bound polaron in the parabolic quantum dots. Superlatt. Microstruct. 70, 39–45 (2014b)

    Article  ADS  Google Scholar 

  • Xiao, J.L.: The effect of magnetic field on RbCl quantum pseudodot qubit. Mod. Phys. Lett. B 29, 1550098–1550102 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khordad, R., Ghanbari, A. Effect of phonons on optical properties of RbCl quantum pseudodot qubits. Opt Quant Electron 49, 76 (2017). https://doi.org/10.1007/s11082-017-0915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-0915-9

Keywords

Navigation