Skip to main content
Log in

Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing

  • Original Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a photonic crystal waveguide platform on silicon-on-insulator substrate is proposed in order to realize a highly sensitive refractive index based biosensor. Following the design, the analysis of the sensor structure are made by using the three dimensional Finite Difference Time Domain method. The principle of sensing is based on the change in refractive index, which in turn changes the output spectrum of the waveguide. Results show that the sensitivity of the sensor depends mainly on the geometrical properties of the defect region of the photonic crystal structure. The phenomenon is verified for various samples having refractive index ranging from 1 (air) to 1.57 (Bovine serum albumin). Further, the structure is compared with few other conventional photonic crystal waveguide designs to analyze the sensing performance. The estimated value of sensitivity of the sensor is found to be 260 nm/RIU with a detection limit of 0.001 RIU. This high sensitivity can enhance the performance of low-concentration analytes detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Birks, T.A., Mogilevtsev, D., Knight, J.C., St J Russell, P.: Dispersion compensation using single material fibres. IEEE Photonics Technol. Lett. 11, 674–676 (1999)

    Article  ADS  Google Scholar 

  • Bouchemat, T., Bouchemat, M., Paraire, N.: High sensitivity of sensors based on two-dimensional photonic crystal. In: Electronics, Communications and Photonics Conference (SIECPC). Saudi International (2011)

  • Buswell, S.C., Wright, V.A., Buriak, J.M., Van, V., Evoy, S.: Specific detection of proteins using photonic crystal waveguides. Opt. Express 16(20), 15949–15957 (2008)

    Article  ADS  Google Scholar 

  • Danner, A.J., Raftery Jr, J.J., Leisher, P.O., Choquette, K.D.: Single mode photonic crystal vertical cavity lasers. Appl. Phys. Lett. 88, 091114-1–091114-3 (2006)

  • Derbali, J., AbdelMalek, F., Obayya, S.S.A., Bouchriha, H., Letizia, R.: Design of a compact photonic crystal sensor. Opt. Quantum Electron. 42, 463–472 (2011)

    Article  Google Scholar 

  • Dorfnera, D., Zabel, T., Hürlimann, T., Hauke, N., Frandsen, L., Rant, U., Abstreiter, G., Finley, J.: Photonic crystal nanostructures for optical biosensing applications. Biosens. Bioelectron. 24, 3688–3692 (2009)

    Article  Google Scholar 

  • Di Falco, A., O’Faolain, L., Krauss, T.F.: Chemical sensing in slotted photonic crystal heterostructure cavities. Appl. Phys. Lett. 94, 063503-1–063503-3 (2009)

  • Guo, S., Albin, S.: Numerical techniques for excitation and analysis of defect modes in photonic crystals. Opt. Express 11(9), 1080–1089 (2003)

    Article  ADS  Google Scholar 

  • Hasek, T., Kurt, H., Citrin, D.S., Koch, M.: Photonic crystals for fluid sensing in the subterahertz range. Appl. Phys. Lett. 89, 173508-1–173508-3 (2006)

    Google Scholar 

  • Jiang, Y., Jiang, W., Gu, L., Chen, X., Chen, R.T.: 80-micron interaction length silicon photonic crystal waveguide modulator. Appl. Phys. Lett. 87(22), 221105-1–221105-3 (2005)

    Google Scholar 

  • Joannoupoulos, J.D., Meade, R., Winn, J.: Photonic Crystals. Princeton University Press, Princeton (1995)

    Google Scholar 

  • Lin, S.Y., Chow, E., Johnson, S.G., Joannopoulos, J.D.: Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-\(\mu \)m wavelength. Opt. Lett. 25(17), 1297–1299 (2000)

  • Mathias, P.C., Ganesh, N., Chan, L.L., Cunningham, B.T.: Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface. Appl. Opt. 46, 2351–2360 (2007)

    Article  ADS  Google Scholar 

  • Mortensen, N.A., Xiao, S., Pedersen, J.: Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications. Microfluid Nanofluid 4, 117–127 (2008)

    Article  Google Scholar 

  • Nagel, M., Bolivar, P.H., Brucherseifer, M., Kurz, H., Bosserhoff, A., Büttner, R.: Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80(1), 154–156 (2002)

    Article  ADS  Google Scholar 

  • Nguyen, M.H., Ming-Chang, Lee, M., Tseng, F.: Study of photonic crystal cavities for biosensors. In: IEEE the 2010 International Conference on Nanotechnology. Seoul, Korea (2010)

  • Patra, S.K., Adhikari, S., Pal, S.: Design and analysis of “Chess board” like photonic crystal for improved light extraction in GaN/InGaN LEDs. IEEE J. Disp. Technol. 9(5), 339–345 (2013)

    Google Scholar 

  • Pul, M., Liu, L., Frandsen, L.H., Ou, H., Yvind, K., Hvam, J.M.: Silicon-on-Insulator ring-shaped photonic crystal waveguides for refractive index sensing. In: Conference on Optical Fiber Communication / National Fiber Optic Engineers Conference (OFC/NFOEC) (2010)

  • Rupérez, J.G., Toccafondo, V., Banuls, M.J., Castello, J.G., Griol, A., Llopis, S.P., Maquieira, A.: Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Opt. Express 18(23), 24276–24286 (2010)

    Article  Google Scholar 

  • Scullion, M.G., Krauss, T.F., Di Falco, A.: Slotted photonic crystal sensors. Sensors 13, 3675–3710 (2013)

    Article  Google Scholar 

  • Selim, R., Pinto, D., Obayya, S.S.A.: Novel fast photonic crystal multiplexer-demultiplexer switches. Opt. Quantum Electron. 42, 425–433 (2011)

    Article  Google Scholar 

  • Shruti, Sinha, R.K., Bhattacharyya, R.: Photonic crystal slab waveguide-based infiltrated liquid sensors: design and analysis. J. Nanophotonics 5, 053505–1 (2011)

  • Xiao, S., Mortensen, N.A.: Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides. J. Opt. A Pure Appl. Opt. 9, S463–S467 (2007)

    Google Scholar 

  • Zhang, M., Malureanu, R., Krüger, A.C., Kristensen, M.: \(1\times 3\) beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides. Opt. Express 18(14), 14944-14949 (2010)

  • Zhao, Y., Zhang, Y.N., Wang, Q.: Research advances of photonic crystal gas and liquid sensors. Sens. Actuators B 160, 1288–1297 (2011)

    Article  Google Scholar 

  • Zhou, W., Qiang, Z., Chen, L.: Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach. J. Phys. D Appl. Phys. 40, 2615–2623 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the director, CSIR-CEERI, Pilani for his encouragement in this work. Authors thank to all members of Optoelectronic Devices Group for their help and cooperation. Authors would like to acknowledge CSIR for sponsoring the PSC-0102 network project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Sankar Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, H.S., Pal, S. Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt Quant Electron 45, 907–917 (2013). https://doi.org/10.1007/s11082-013-9697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-013-9697-x

Keywords

Navigation