Skip to main content
Log in

Derivation of three-derivative Runge-Kutta methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce an algorithm for a numerical integration of ordinary differential equations in the form of y′ = f(y). We extend the two-derivative Runge-Kutta methods (Chan and Tsai, Numer. Algor. 53, 171–194, 2010) to three-derivative Runge-Kutta methods by including the third derivative \(y^{\prime \prime \prime }=\hat {g}(y)=f^{\prime \prime }(y)(f(y), f(y))+f^{\prime }(y)f^{\prime }(y)f(y)\). We present an approach based on the algebraic theory of Butcher (Math. Comp. 26, 79–106, 1972) and the \(\mathcal {B}-\) series theory of Hairer and Wanner (Computing 13, 1–15 (1974)) combined with the methodology of Chan and Chan (Computing 77(3), 237–252, 2006). In this study, special explicit three-derivative Runge-Kutta methods that possess one evaluation of first derivative, one evaluation of second derivative, and many evaluations of third derivative per step are introduced. Methods with stages up to six and of order up to ten are presented. The numerical calculations have been performed on some standard problems and comparisons made with the accessible methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akanbi, M.A., Okunuga, S.A., Sofoluwe, A.B.: Step Size Bounds for a Class of Multiderivative Explicit Runge-Kutta Methods, Modeling and Simulation in Engineering, Economics and Management, pp 188–197. Springer, Berlin (2012)

    Google Scholar 

  2. Albrecht, P.: A new theoretical approach to Runge-Kutta methods. SIAM J. Numer. Anal 24(2), 391–406 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C.: An algebraic theory of integration methods. Math. Comp 26, 79–106 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley, Chichester (1987)

    MATH  Google Scholar 

  5. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, ISBN: 978-0-470-72335-7 (2008)

  6. Butcher, J.C.: Trees and numerical methods for ordinary differential equations. Numer. Algor. 53, 153–170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge-Kutta methods. Numer. Algor. 53, 171–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T.M.H., Chan, R.P.K.: A simplified approach to the order conditions of integration methods. Computing 77(3), 237–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal 11, 321–331 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, Y., You, X., Ming, Q.: Exponentially fitted two-derivative Runge-Kutta methods for the Schrödinger equation. Int. J. Mod. Phys. C 24, 1–9 (2013). Article ID 1350073

    Article  MathSciNet  Google Scholar 

  11. Fang, Y., You, X., Ming, Q.: Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations. Numer. Algor 65, 651–667 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  13. Gekeler, E., Widmann, R.: On the order conditions of Runge-Kutta methods with higher derivatives. Numer. Math 50(2), 183–203 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goeken, D., Johnson, O.: Runge-Kutta with higher order derivative approximations. Appl. Numer. Math. 34, 207–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing 13, 1–15 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hairer, E., Wanner, G.: Multistep-multistage-multiderivative methods of ordinary differential equations. Computing 11(3), 287–303 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff problems, 2nd edn. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

    MATH  Google Scholar 

  18. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn, Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  19. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press (1996)

  20. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1973)

    MATH  Google Scholar 

  21. Ökten Turacı, M., Öziş, T.: A note on explicit three-derivative Runge-Kutta methods (ThDRK). Bull. Internat. Math. Virtual Inst 5(1), 65–72 (2015)

    MathSciNet  Google Scholar 

  22. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comp. J 5, 329–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verner, J.H.: Explicit Runge-Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal 15(4), 772–790 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, X., Xia, J.: Extended Runge-Kutta-like formulae. Appl. Numer. Math. 56, 1584–1605 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wusu, A.S., Akanbi, M.A., Okunuga, S.A.: A three-stage multiderivative explicit Runge-Kutta method. Amer. J. Comput. Math. 3, 121–126 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukaddes Ökten Turacı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turacı, M.Ö., Öziş, T. Derivation of three-derivative Runge-Kutta methods. Numer Algor 74, 247–265 (2017). https://doi.org/10.1007/s11075-016-0147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0147-2

Keywords

Navigation